Autors: Naskinova I., Kolev M., Lazarova, M. D.
Title: Forecasting Strategies in Retail: Utilizing Advanced Machine Learning Methods while Safeguarding Privacy
Keywords:

Abstract: Demand forecasting is critical to optimizing retail inventory management, pricing, and operations. This study compares several time series forecasting models on a publicly available retail dataset, including traditional stats like ARIMA and SARIMA, smoothing techniques, and new ones from Facebook, such as Prophet and Neural Prophet. We evaluate each model using metrics like Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2. The results show that NeuralProphet and hybrid models outperform traditional models like ARIMA and SARIMA. We also look at the computational efficiency and practicality of the models and provide insights into how they can be used in real-world demand forecasting scenarios. The results show that traditional models are robust. Still, advanced models like NeuralProphet and hybrids, which combine machine learning with time series forecasting, have a lot of potential to improve forecast accuracy and operational decision-making.

References

  1. G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting and control, 3. ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.
  2. P. J. Brockwell and R. A. Davis, Time series: theory and methods, 2nd ed. in Springer series in statistics. New York: Springer, 1996.
  3. G. Box, “Box and Jenkins: Time Series Analysis, Forecasting and Control,” in A Very British Affair, London: Palgrave Macmillan UK, 2013, pp. 161-215. doi: 10.1057/9781137291264_6.
  4. P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting. in Springer Texts in Statistics. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-29854-2.
  5. J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “ARIMA models to predict next-day electricity prices,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1014-1020, Aug. 2003, doi: 10.1109/TPWRS.2002.804943.
  6. L. Rubio, A. J. Gutierrez-Rodríguez, and M. G. Forero, “EBITDA Index Prediction Using Exponential Smoothing and ARIMA Model,” Mathematics, vol. 9, no. 20, p. 2538, Oct. 2021, doi: 10.3390/math9202538.
  7. C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving averages,” Int. J. Forecast., vol. 20, no. 1, pp. 5-10, Jan. 2004, doi: 10.1016/j.ijforecast.2003.09.015.
  8. R. J. Hyndman and Y. Khandakar, “Automatic Time Series Forecasting: The forecast Package for R,” J. Stat. Softw., vol. 27, no. 3, 2008, doi: 10.18637/jss.v027.i03.
  9. J. D. Hamilton, Time Series Analysis. Princeton University Press, 1994. doi: 10.1515/9780691218632.
  10. A. C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, 1st ed. Cambridge University Press, 1990. doi: 10.1017/CBO9781107049994.
  11. M. Caivano and A. Harvey, “Time-series models with an EGB2 conditional distribution,” J. Time Ser. Anal., vol. 35, no. 6, pp. 558-571, Nov. 2014, doi: 10.1111/jtsa.12081.
  12. A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55-67, Feb. 1970, doi: 10.1080/00401706.1970.10488634.
  13. S. J. Taylor and B. Letham, “Forecasting at Scale,” Am. Stat., vol. 72, no. 1, pp. 37-45, Jan. 2018, doi: 10.1080/00031305.2017.1380080.
  14. O. Triebe, H. Hewamalage, P. Pilyugina, N. Laptev, C. Bergmeir, and R. Rajagopal, “NeuralProphet: Explainable Forecasting at Scale,” Nov. 29, 2021, arXiv: arXiv:2111.15397. Accessed: Sep. 01, 2024. [Online]. Available: http://arxiv.org/abs/2111.15397
  15. M. G. S. Kenyi and K. Yamamoto, “A hybrid SARIMA-Prophet model for predicting historical streamflow time-series of the Sobat River in South Sudan,” Discov. Appl. Sci., vol. 6, no. 9, p. 457, Aug. 2024, doi: 10.1007/s42452-024-06083-x.

Issue

Journal of Physics: Conference Series, vol. 2910, pp. 1-22, 2025, United Kingdom, https://doi.org/10.1088/1742-6596/2910/1/012008

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus