Autors: Yordanova, S. T., Stoitseva-Delicheva, D. R.
Title: Prospects of Intelligent Techniques for Energy Efficient Control of Drying Process
Keywords: drying process, energy efficient control, fuzzy logic control, real time control experiments, simulations

Abstract: Drying is one of the widely spread in industry great energy consuming processes. The plant is inertial, nonlinear and with model uncertainties. To reduce the energy required special methods are developed for its control. In the present research a Sugeno model-free PI fuzzy logic controllers (FLC) are designed for the control of the internal temperature of a laboratory dryer for fruits. Besides tackling with the plant nonlinearity and the lack of a plant model the FLC ensures system stability, good performance and energy safety. System simulations prove that the FLC systems outperform other energy efficient control systems designed using classical open loop approaches or a linear plant model.

References

  1. Chojnacka, K., Mikula, K., Izydorczyk, G., Skrzypczak, D., Witek-Krowiak, A., Moustakas, K., Ludwig, W., and Kulazynski M. Improvements in drying technologies-Efficient solutions for cleaner production with higher energy efficiency and reduced emission. Journal of Cleaner Production, 2021
  2. Jumah, R. Y., Mujumdar, A. S., and Raghavan, V. G. S. Control of Industrial Dryers. CRC Press, Taylor & Francis Group, 2007
  3. Atuonwu, J. C., Jin, X., van Straten, G., van Deventer, H. C., van Boxtela, A. J. B., Reducing energy consumption in food drying: opportunities in desiccant adsorption and other dehumidification strategies, Procedia Food Science 1, 1799-1805, 2011
  4. Samadi, S. H., Ghobadian, B., Najafi, G., and Motevali, A., Potential saving in energy using combined heat and power technology for drying agricultural products (banana slices). Journal of the Saudi Society of Agricultural Sciences, 13, 174-182, 2014
  5. Zohrabi, S., Aghbashlo, M., Seiiedlou, S. S., Scaar, H., Mellmann, J., Energy saving in a convective dryer by using novel real-time exergybased control schemes adjusting exhaust air recirculation. J. Clean. Prod., 2020
  6. Satpati, B., Koley, C., Datta, S., Nonlinear model of pneumatic conveying dryer for economic process control. Dry. Technol. 38, 1516-1537, 2020
  7. Wutthithanyawat, Ch., and Srisiriwat N., Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change. MATEC Web of Conferences 65 03002, 2016
  8. Gacto, M. J., Alcala, R. and Herrera F., A Multi-objective evolutionary elgorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems. Appl. Intell., 36, 330-347, 2012
  9. Jantzen, J., Foundations of Fuzzy Control. A Practical Approach. 2nd ed., John Wiley & Sons, Chichester, 2013
  10. Osama, I. H., Ayman, A. A., Ahmed, A. A-I., Parameter tuning via genetic algorithm of fuzzy controller for fire tube boiler. Int. J. of Intell. Syst. &Appl., 4 (9-18), 9-17, 2012
  11. Yordanova, S. and Sivchev, Y., Design and tuning of parallel distributed compensation-based fuzzy logic controller for temperature. J. of Autom. & Contr., 2 (3), 79-85, 2014
  12. Yordanova, S., Intelligent approaches for linear controllers tuning with application to temperature control. J. of Intell. & Fuzzy Syst., 27 (6), 2809-2820, 2014
  13. Junior, M. P.; da Silva, M. T.; Guimaraes, F. G.; Euzebio, T. A. M., Energy Savings in a Rotary Dryer Due to a Fuzzy Multivariable Control Application. Dry. Technol., 40 (6), 1196-1209, 2022
  14. Yanti, N., Nur, T., & Randis, R., Implementation of Fuzzy Logic in Fish Dryer Design. ILKOM Jurnal Ilmiah, 14 (1), 39-51, 2022
  15. Lutfy, O. F., Selamat, H., Mohd Noor, S. B., Intelligent modeling and control of a conveyor belt grain dryer using a simplified type 2 neurofuzzy controller. Drying Technol. 33 (10), 1210-1222, 2015
  16. Hosseinpour, S. & Martynenko, A., An adaptive fuzzy logic controller for intelligent drying, Drying Technology, 41 (7), 2022
  17. Stoitseva-Delicheva D., Impulse drying of fruits with symmetric pulse period, Proceedings of the Technical University of Sofia, 64 (2): 259-266, 2014
  18. Fuzzy Logic Toolbox: User's Guide for Use with MATLAB. The MathWorks, Inc. Natick, MA, 1998
  19. Haupt, R. L. and Haupt, S. El., Practical Genetic Algorithms. 2nd ed., Hoboken, John Wiley and Sons, New Jersey, 2004
  20. MATLAB-Genetic Algorithm and Direct Search Toolbox: User's Guide, The MathWorks, Inc., Natick, MA, 2004
  21. SIMATIC-Programming with STEP 7 V5. 2. Manual, Edition 12/02, A5E00171230-01, SIEMENS AG, 2002
  22. Neshkov T., Yordanova S., and Topalova I., Process Control and Production Automation, Technical University of Sofia, 152, 2007
  23. Yordanova, S., Methods for Design of Fuzzy Logic Controllers for Robust Process Control, KING, Sofia. (in Bulgarian), 2011
  24. Yordanova, S., Slavov, M. and Gueorguiev, B., Parallel distributed compensation for improvement of level control in carbonisation column for soda production. Contr. Eng. Pract, 71, 53-60, 2018
  25. Petrov, M., Taneva, A., & Ganchev, I., Fuzzy PID Controller design in MATLAB environment, Proceedings of the Int. Conf. Automatics and Informatics, Sofia, pp. 57-61, 2007
  26. Feng, G., Analysis and Synthesis of Fuzzy Control Systems: A Model Based Approach. Taylor & Francis, Bosa Roca, US, 2017
  27. Tanaka, K. and Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, 2001
  28. Slavov M., Design and investigation of adaptive fuzzy level control system for carbonisation column, Proceedings of the Technical University of Sofia 72 (2): 66-72, 2022
  29. Yordanova S., Design of Fuzzy Supervisor-based Adaptive Process Control Systems. In: New Approaches in Intelligent Control: Techniques, Methodologies and Applications, Book series-Intelligent Systems Reference Library, Eds: K. Nakamatsu, R. Kountchev, Springer Int. Publ., Switzerland, 107, Ch. 1: 1-42, 2016
  30. Yordanova S., Gueorguiev B., Slavov M., Design and industrial implementation of fuzzy logic control of level in soda production, Eng. Sci. and Techn., an International Journal 23 (3): 691-699, 2020.

Issue

International Conference Automatics and Informatics, ICAI 2024 - Proceedings, pp. 205-211, 2024, Albania, https://doi.org/10.1109/ICAI63388.2024.10851524

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus