Autors: Rizanov, S. M., Yakimov, P. I., Nikolov, D. N., Boydens J. Title: An Embedded Cellular Automata Algorithm for Infrared Object Detection Keywords: algorithm, cellular automata, embedded system, infrared, object detection and trackingAbstract: This work proposes and presents a cellular automata algorithm for infrared object detection and tracking. The algorithm's application is aimed towards computationally limited edge computing sensory modules. Performed is a statistical evaluation of the algorithm's noise resilience through a 3D histogram method. Proposed is a methodology for the optimal choice of the algorithm's fine-tuning parameter values. The performance influence of applying low-pass Kernel filtering was evaluated and developed was a majority voting-based concurrent object mask-generating algorithm. References - Banuls, A., Mandow, A., Vazquez-Martin, R., Morales, J., & Garcia-Cerezo, A. (2020, November). Object detection from thermal infrared and visible light cameras in search and rescue scenes. In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 380-386). IEEE.
- Li, J., & Ye, J. (2023). Edge-YOLO: Lightweight infrared object detection method deployed on edge devices. Applied Sciences, 13(7), 4402.
- Bao, C., Cao, J., Hao, Q., Cheng, Y., Ning, Y., & Zhao, T. (2023). Dual-YOLO architecture from infrared and visible images for object detection. Sensors, 23(6), 2934.
- Fendri, E., Boukhriss, R. R., & Hammami, M. (2017). Fusion of thermal infrared and visible spectra for robust moving object detection. Pattern Analysis and Applications, 20, 907-926.
- Liu, J., Fan, X., Huang, Z., Wu, G., Liu, R., Zhong, W., & Luo, Z. (2022). Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5802-5811).
- Gao, S., Cheng, Y., & Zhao, Y. (2013). Method of visual and infrared fusion for moving object detection. Optics letters, 38(11), 1981-1983.
- Zhao, W., Xie, S., Zhao, F., He, Y., & Lu, H. (2023). Metafusion: Infrared and visible image fusion via meta-feature embedding from object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13955-13965).
- Wu, X., Hong, D., & Chanussot, J. (2022). UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Transactions on Image Processing, 32, 364-376.
- Wu, X., Hong, D., Huang, Z., & Chanussot, J. (2022). Infrared small object detection using deep interactive U-Net. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
- Du, S., Zhang, B., Zhang, P., Xiang, P., & Xue, H. (2021). FA-YOLO: An Improved YOLO Model for Infrared Occlusion Object Detection under Confusing Background. Wireless Communications and Mobile Computing, 2021(1), 1896029.
- El Baf, F., Bouwmans, T., & Vachon, B. (2009, June). Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 60-65). IEEE.
- Jiang, C., Ren, H., Ye, X., Zhu, J., Zeng, H., Nan, Y., ... & Huo, H. (2022). Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 112, 102912.
- Li, S., Li, Y., Li, Y., Li, M., & Xu, X. (2021). Yolo-firi: Improved yolov5 for infrared image object detection. IEEE access, 9, 141861-141875.
Issue
| 2024 33rd International Scientific Conference Electronics, ET 2024 - Proceedings, 2024, Albania, https://doi.org/10.1109/ET63133.2024.10721561 |
|