Autors: Rizanov, S. M., Yakimov, P. I., Nikolov, D. N., Boydens J.
Title: An Embedded Cellular Automata Algorithm for Infrared Object Detection
Keywords: algorithm, cellular automata, embedded system, infrared, object detection and tracking

Abstract: This work proposes and presents a cellular automata algorithm for infrared object detection and tracking. The algorithm's application is aimed towards computationally limited edge computing sensory modules. Performed is a statistical evaluation of the algorithm's noise resilience through a 3D histogram method. Proposed is a methodology for the optimal choice of the algorithm's fine-tuning parameter values. The performance influence of applying low-pass Kernel filtering was evaluated and developed was a majority voting-based concurrent object mask-generating algorithm.

References

  1. Banuls, A., Mandow, A., Vazquez-Martin, R., Morales, J., & Garcia-Cerezo, A. (2020, November). Object detection from thermal infrared and visible light cameras in search and rescue scenes. In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 380-386). IEEE.
  2. Li, J., & Ye, J. (2023). Edge-YOLO: Lightweight infrared object detection method deployed on edge devices. Applied Sciences, 13(7), 4402.
  3. Bao, C., Cao, J., Hao, Q., Cheng, Y., Ning, Y., & Zhao, T. (2023). Dual-YOLO architecture from infrared and visible images for object detection. Sensors, 23(6), 2934.
  4. Fendri, E., Boukhriss, R. R., & Hammami, M. (2017). Fusion of thermal infrared and visible spectra for robust moving object detection. Pattern Analysis and Applications, 20, 907-926.
  5. Liu, J., Fan, X., Huang, Z., Wu, G., Liu, R., Zhong, W., & Luo, Z. (2022). Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5802-5811).
  6. Gao, S., Cheng, Y., & Zhao, Y. (2013). Method of visual and infrared fusion for moving object detection. Optics letters, 38(11), 1981-1983.
  7. Zhao, W., Xie, S., Zhao, F., He, Y., & Lu, H. (2023). Metafusion: Infrared and visible image fusion via meta-feature embedding from object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13955-13965).
  8. Wu, X., Hong, D., & Chanussot, J. (2022). UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Transactions on Image Processing, 32, 364-376.
  9. Wu, X., Hong, D., Huang, Z., & Chanussot, J. (2022). Infrared small object detection using deep interactive U-Net. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
  10. Du, S., Zhang, B., Zhang, P., Xiang, P., & Xue, H. (2021). FA-YOLO: An Improved YOLO Model for Infrared Occlusion Object Detection under Confusing Background. Wireless Communications and Mobile Computing, 2021(1), 1896029.
  11. El Baf, F., Bouwmans, T., & Vachon, B. (2009, June). Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 60-65). IEEE.
  12. Jiang, C., Ren, H., Ye, X., Zhu, J., Zeng, H., Nan, Y., ... & Huo, H. (2022). Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 112, 102912.
  13. Li, S., Li, Y., Li, Y., Li, M., & Xu, X. (2021). Yolo-firi: Improved yolov5 for infrared image object detection. IEEE access, 9, 141861-141875.

Issue

2024 33rd International Scientific Conference Electronics, ET 2024 - Proceedings, 2024, Albania, https://doi.org/10.1109/ET63133.2024.10721561

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus