Autors: Aleksandrova, M. P., Pandiev, I. M. Title: Synergistic integration of energy harvesters and supercapacitors for enhanced performance Keywords: Flexible energy harvesters, Piezoelectric generators, Supercapacitors, Wearable power supplyAbstract: Flexible substrates can conform to irregular surfaces or shapes, enabling energy harvesting and storage devices to be integrated into a variety of form factors, including curved or bendable surfaces. Having an integrated energy harvester and storage system ensures a reliable and portable power source, providing power autonomy. The proposed element was layer-by-layer design including silver electrode, polyvinylidene fluoride-trifluoroethylene/multiwall carbon nanotubes, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate: carbon nanotubes, aluminium oxide, graphene and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate: carbon nanotubes (Ag/PVDF-TrFE:MWCNT/PEDOT:PSS:CNT/Al2O3/Gr/PEDOT:PSS:CNT), prepared by spray coating. A voltage rectifier with a low-pass filter and a direct current to direct current (DC-DC) converter was used as a power management system and intermediate unit between the harvester and storage part of the element. The type of the electronic circuit is voltage-doubler rectifier. It was found that piezoelectric harvester can generates voltage with a magnitude of 2V at loading of 110 g/cm2@10 Hz and with the proposed electronic circuit can be determined the workability of the created element during repeated charging and discharging, without introducing interfering changes in the capacity. The behaviour of the supercapacitor part is dependent on the thickness of Al2O3 and demonstrates more favourable characteristics at the thicker film of 750 nm, where the charging time is short (6s), the voltage ripples are small (±0.50 mV), and the maximum output voltage after charging almost reached the input supply voltage (∼1.94 V output voltage at 2 V input voltage). In addition, it resists up to 15500 cycles and shows a stable retention capacitance of 1.63 mF. The devices retain their capacity at multiple bending (1000) to 93 % and 91 %, according to the aluminium oxide film thickness, which is suitable for wearable devices. References - Fagiolari, Lucia, Sampò, Matteo, Lamberti, Andrea, Amici, Julia, Francia, Carlotta, Bodoardo, Silvia, Bella, Federico, Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Mater. 51 (2022), 400–434.
- Zhong, Y., Xia, X., Mai, W., Tu, J., Fan, H.J., Integration of energy harvesting and electrochemical storage devices. Advanced Materials Technologies, 2(12), 2017, 1700182.
- Pu, X., Hu, W., Wang, Z.L., Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small, 14(1), 2018 Jan.
- Huang, S., Gao, Y., Hu, Y., Shen, F., Jin, Z., Cho, Y., Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis. RSC Adv. 13:42 (2023 Oct 2), 29174–29194.
- Arshad, H., Raza, W., Mehmood, A., Jalees, S., Ao, L., Deng, Y., Ramie, A., Cai, X., Liu, D., Ionic potency regulation of coagulation bath induced by saline solution to control over the pore structure of PBI membrane for high-performance lithium metal batteries. J. Energy Chem. 94 (2024), 288–298.
- Hussain, A., Luo, Y., Li, T., Zhang, H., Mirza, S., Zhang, H., Li, X., Stop four gaps with one bush: versatile hierarchical polybenzimidazole nanoporous membrane for highly durable Li–S battery. ACS Appl. Mater. & Interf 12:50 (2020), 55809–55819.
- Ali, Faizan, Raza, Waseem, Li, Xilin, Gul, Hajera, Kim, Ki-Hyun, Piezoelectric energy harvesters for biomedical applications. Nano Energy 57 (2019), 879–902.
- Kim, J., Campbell, A.S., de Ávila, B.E.F., et al. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37 (2019), 389–406.
- Aleksandrova, M., Tsanev, T., Kadikoff, B., Alexandrov, D., Nedelchev, K., Kralov, I., Piezoelectric elements with PVDF–TrFE/MWCNT-aligned composite nanowires for energy harvesting applications. Crystals, 13, 2023, 1626.
- Xue, X., Wang, S., Guo, W., Zhang, Y., Wang, Z.L., Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12 (2012), 5048–5054.
- Xue, X., Deng, P., He, B., Nie, Y., Xing, L., Zhang, Y., Wang, Z.L., Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater., 4, 2013, 1301329.
- Ramadoss, A., Saravanakumar, B., Lee, S.W., Kim, Y.-S., Kim, S.J., Wang, Z.L., Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9 (2015), 4337–4345.
- Fekri Aval, L., Ghoranneviss, M., Behzadi Pour, G., High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon, 4(11), 2018, e00862.
- Sheng, H., Ma, Y., Zhang, H., Yuan, J., Li, F., Li, W., Xie, E., Lan, W., Integration of supercapacitors with sensors and energy-harvesting devices: a review. Adv. Mater. Technol., 2024, 2301796.
- Fu, Z., Wang, N., Legut, D., Si, C., Zhang, Q., Du, S., Germann, T.C., Francisco, J.S., Zhang, R., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 119 (2019), 11980–12031.
- Anasori, B., Lukatskaya, M.R., Gogotsi, Y., 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2, 2017, 16098.
- Kumar, K.S., Choudhary, N., Jung, Y., Thomas, J., Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3 (2018), 482–495.
- Ibrahim, Y., Mohamed, A., Abdelgawad, A.M., Eid, K., Abdullah, A.M., Elzatahry, A., The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor. Nanomaterials, 10, 2020, 1916.
- Habib, M., Ullah, S., Khan, F., Rafiq, M.I., Balobaid, S.A., Alshahrani, T., Muhammad, Z., Supercapacitor electrodes based on single crystal layered ZrX2(X = S, Se) using chemical vapor transport method. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 298, 2023, 116904.
- Sheng, H., Zhang, X., Liang, J., Shao, M., Xie, E., Yu, C., Lan, W., Recent advances of energy solutions for implantable bioelectronics. Adv. Healthcare Mater., 10, 2021, 2100199.
- Sheng, H., et al. A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors. Sci. Adv., 9, 2023, eadh8083.
- Ahmad, A., Gondal, M.A., Hassan, M., Iqbal, R., Ullah, S., Alzahrani, A.S., Memon, W.A., Mabood, F., Melhi, S., ACS Omega 8:24 (2023), 21653–21663.
- Hussain, A., Mohamed, M.M., Aijaz, M.O., Karim, M.R., Aziz, M.A., Electrospun PEI/PAN membrane for advanced Zn ion hybrid supercapacitors. J. Energy Storage, 84, 2024, 110974.
- Ponticorvo, Eleonora, Galvagno, Sergio, Portofino, Sabrina, Borriello, Carmela, Tammaro, Loredana, Iovane, Pierpaolo, Rametta, Gabriella, Sarn, Maria, Alumina based electrode for stable and improved supercapacitor applications. CHEMICAL ENGINEERING TRANSACTIONS 84 (2021), 1–6.
- Wu, Lin-Jung, Wu, Jenn-Ming, Improved dielectric properties of -doped thin films for tunable microwave applications. Appl. Phys. Lett., 91(13), September 2007, 132909 24.
- Gholizadeh, Z., Aliannezhadi, M., Ghominejad, M., et al. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method. Sci. Rep., 13, 2023, 6131.
- Aleksandrova, M., Kolev, G., Vucheva, Y., Pathan, H., Denishev, Kr, Characterization of piezoelectric microgenerator with nanobranched ZnO grown on a polymer coated flexible substrate. Appl. Sci. 7 (2017), 890–896.
- Dallago, E., et al. Active self supplied AC-DC converter for piezoelectric energy scavenging systems with supply independent bias. Proc. Of IEEE International Symposium on Circuits And Systems (ISCAS), 2008, 1448–1451 Seattle.
- Aktakka, E.E., Najafi, K., A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J. Solid State Circ. 49:9 (2014), 2017–2029.
- Tietze, V., Schenk, Ch, Power supplies. Electronic Circuits, second ed., 2008, Springer-Verlag, New York, 885–928 Chapter 16.
- Stefanov, N., Special rectifiers, and Power rectifiers. Power Supply Devices. Tehnika: Sofia, Bulgaria, 2002, 43–68 Chapter 2, and Chapter 4.
- Li, S., Roy, A., Calhoun, B.H., A piezoelectric energy-harvesting system with parallel-SSHI rectifier and integrated MPPT achieving 417% energy-extraction improvement and 97% tracking efficiency. In Proc. Of the 2019 Symposium on VLSI Circuits, 2019, Kyoto.
- Du, S., Jia, Y., Zhao, C., Amaratunga, G.A.J., Seshia, A.A., A fully integrated split-electrode SSHC rectifier for piezoelectric energy harvesting. IEEE J. Solid State Circ. 54:6 (2019), 1733–1743.
- Chamanian, S., Muhtaroğlu, A., Külah, H., A self-adapting synchronized-switch interface circuit for piezoelectric energy harvesters. IEEE Trans. Power Electron. 35:1 (2020), 901–912.
- Çiftci, B., Chamanian, S., Koyuncuoğlu, A., Muhtaroğlu, A., Külah, H., A low-profile autonomous interface circuit for piezoelectric micro-power generators. IEEE Transactions on Circuits and Systems I: Regular Papers 68:4 (2020), 1458–1471.
- Chamanian, S., Çiftci, B., Muhtaroğlu, A., Külah, H., A self-powered and area efficient SSHI rectifier for piezoelectric harvesters. IEEE Access 9 (2021), 117703–117713.
- Chew, Z.J., Zhu, M., Adaptive self-configurable rectifier for extended operating range of piezoelectric energy harvesting. IEEE Trans. Ind. Electron. 67:4 (2020), 3267–3276 2020.
- Costanzo, L., Lo Schiavo, A., Vitelli, M., A self-supplied power optimizer for piezoelectric energy harvesters operating under non-sinusoidal vibrations. Energies, 16, 2023.
- Ben Ammar, M., Sahnoun, S., Fakhfakh, A., Viehweger, C., Kanoun, O., Self-powered synchronized switching interface circuit for piezoelectric footstep energy harvesting. Sensors, 23, 2023.
- Edla, M., Lim, Y.Y., Mikio, D., Padilla, R.V., Non-linear switching circuit for active voltage rectification and ripples reduction of piezoelectric energy harvesters. Energies, 15, 2022.
- Haseeb, A., Edla, M., Ucgul, M., Santoso, F., Deguchi, M., A voltage doubler boost converter circuit for piezoelectric energy harvesting systems,”. Energies, 16, 2023.
- Haseeb, A., Edla, M., Thabet, A.M., Deguchi, M., Kamran, M., A self-powered dual-stage boost converter circuit for piezoelectric energy harvesting systems. Energies, 2023, 16 2023.
- Kamran, M., Edla, M., Thabet, A.M., Haseeb, A., Mikio, D., Bui, V., A self-powered FBRJT AC-DC conversion circuit for piezoelectric energy harvesting systems. Energies, 16, 2023.
- ADP5090 Ultralow Power Boost Regulator with MPPT and Charge Management—Datasheet. Analog Devices, https://www.analog.com/en/products/adp5090.html.
- Evaluation Board for the ADP5090 Ultralow Power Boost Regulator— EVAL-ADP5090. Analog Devices,. https://www.analog.com/media/en/technical-documentation/user-guides/EVAL-ADP5090_UG-708.pdf.
- M. Aleksandrova, I. Pandiev, Printed piezoelectric harvester for integration in a wearable energy storage device, 47thInternational Spring Seminar on Electronics Technology, 15-19 May, Prague, Czech Republic.
- Aleksandrova, M., Polymeric seed layer as a simple approach for nanostructuring of Ga-doped ZnO films for flexible piezoelectric energy harvesting. Microelectron. Eng., 233, 2020, 111434.
- Say, M.G., Brett, C.J., Edberg, J., Roth, S.V., Söderberg, L.D., Engquist, I., Berggren, M., Scalable paper supercapacitors for printed wearable electronics. ACS Appl. Mater. Interfaces 14 (2022), 55850–55863.
- Yan, Z., Luo, S., Li, Q., Wu, Z.S., Liu, S.F., Recent advances in flexible wearable supercapacitors: properties, fabrication, and applications. Adv. Sci., 11(8), 2024 Feb, e2302172.
Issue
| Heliyon, vol. 11, pp. 12, 2025, Netherlands, https://doi.org/10.1016/j.heliyon.2025.e42808 |
|