Autors: Mateev, V. M., Sinico M., Gorji Ghalamestani S., Van Hooreweder B. Title: Magnetic properties of as-built and heat treated M789 and M300 maraging steels produced via laser powder bed fusion Keywords: Additive manufacturing, High-speed rotors, Laser powder bed fusion, M789, Magnetic properties, Maraging steelAbstract: Magnetic material properties, including magnetization curve, magnetic hysteresis, and loss, are systematically examined for both grades. The effect of a solution annealing plus aging heat treatment is explored to determine how these properties differ between the as-built and heat-treated conditions. The findings illustrate a substantial improvement in magnetic properties post-heat treatment. Specifically, an increase in maximum magnetic permeability by 73 % for M789 and 56 % for M300 is measured. Additionally, reductions in hysteresis loss were observed, with a decrease of 29 % for M300 and 35 % for M789. The knowledge of these properties will be crucial for applying additive manufacturing on high-speed rotors, magnetic gears or magnetic bearings components where maraging steels are already, sometimes, utilized. References - Rodriguez-Vargas, B.R., Stornelli, G., Folgarait, P., Ridolfi, M.R., Miranda Pérez, A.F., Di Schino, A., Recent advances in additive manufacturing of soft magnetic materials: a review. Materials, 16, 2023, 5610, 10.3390/ma16165610.
- Périgo, E.A., Jacimovic, J., García Ferré, F., Scherf, L.M., Additive manufacturing of magnetic materials. Addit. Manuf., 30, 2019, 100870, 10.1016/j.addma.2019.100870.
- Pham, T., Kwon, P., Foster, S., Additive manufacturing and topology optimization of magnetic materials for electrical machines—a review. Energies, 14, 2021, 283, 10.3390/en14020283.
- Schäfer, K., Fim, R.G.T., Maccari, F., Braun, T., Riegg, S., Skokov, K.P., Koch, D., Bruder, E., Radulov, I., Ahrens, C.H., Wendhausen, P.A.P., Gutfleisch, O., Laser powder bed fusion of anisotropic Nd-Fe-B bonded magnets utilizing an in-situ mechanical alignment approach. J. Magn. Magn. Mater., 583, 2023, 171064, 10.1016/j.jmmm.2023.171064.
- Tiismus, H., Kallaste, A., Vaimann, T., Rassõlkin, A., State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines. Addit. Manuf., 55, 2022, 102778, 10.1016/j.addma.2022.102778.
- Yang, J., Fu, Z., Ye, J., Kübrich, D., Körner, C., Electron beam-based additive manufacturing of Fe93.5Si6.5 (wt%) soft magnetic material with controllable magnetic performance. Scr. Mater., 210, 2022, 114460, 10.1016/j.scriptamat.2021.114460.
- Andreiev, A., Hoyer, K.-P., Dula, D., Hengsbach, F., Haase, M., Gierse, J., Zimmer, D., Tröster, T., Schaper, M., Soft-magnetic behavior of laser beam melted FeSi3 alloy with graded cross-section. J. Mater. Process. Technol., 296, 2021, 117183, 10.1016/j.jmatprotec.2021.117183.
- Shen, X., Meng, F., Lau, K.B., Wang, P., Lee, C.H.T., Texture and microstructure characterizations of Fe-3.5wt%Si soft magnetic alloy fabricated via laser powder bed fusion. Mater. Charact., 189, 2022, 112012, 10.1016/j.matchar.2022.112012.
- Selema, A., Beretta, M., Van Coppenolle, M., Tiismus, H., Kallaste, A., Ibrahim, M.N., Rombouts, M., Vleugels, J., Kestens, L.A.I., Sergeant, P., Evaluation of 3D-printed magnetic materials for additively-manufactured electrical machines. J. Magn. Magn. Mater., 569, 2023, 170426, 10.1016/j.jmmm.2023.170426.
- Selema, A., Beretta, M., Ibrahim, M.N., Verwimp, J., Rombouts, M., Vleugels, J., Kestens, L.A.I., Sergeant, P., Material engineering of 3D-printed silicon steel alloys for the next generation of electrical machines and sustainable electromobility. J. Magn. Magn. Mater., 584, 2023, 171106, 10.1016/j.jmmm.2023.171106.
- Coey, J.M.D., Parkin, S.S.P., (eds.) Handbook of magnetism and magnetic materials, 2021, Springer, Cham.
- K.S. Narasimhan, Magnetic Materials and Properties for Powder Metallurgy Part Applications, (2015). https://doi.org/10.31399/asm.hb.v07.a0006057.
- Haftlang, F., Kim, E.S., Kim, H.S., Crystallographic-orientation-dependent magnetic properties of Fe–Ni permalloy in-situ alloyed using additive manufacturing. J. Mater. Process. Technol., 309, 2022, 117733, 10.1016/j.jmatprotec.2022.117733.
- Evlashin, S.A., Volkova, A.A., Mendagaliev, R.V., Babkin, K.D., Bondareva, J.V., Simonov, A.P., Kuzminova, Yu.O., Dubinin, O.N., Chernodubov, D.A., Shibalova, A.A., Kobykhno, I.A., Klimova-Korsmik, O.G., Magnetic and mechanical properties of 316L/410L/316L sandwich structure produced by direct energy deposition. Mater. Today Commun., 37, 2023, 107230, 10.1016/j.mtcomm.2023.107230.
- de Oliveira, A.R., de Oliveira, V.F., Teixeira, J.C., Del Conte, E.G., Investigation of the build orientation effect on magnetic properties and Barkhausen Noise of additively manufactured maraging steel 300. Addit. Manuf., 38, 2021, 101827, 10.1016/j.addma.2020.101827.
- Plotkowski, A., Pries, J., List, F., Nandwana, P., Stump, B., Carver, K., Dehoff, R.R., Influence of scan pattern and geometry on the microstructure and soft-magnetic performance of additively manufactured Fe-Si. Addit. Manuf., 29, 2019, 100781, 10.1016/j.addma.2019.100781.
- Garibaldi, M., Ashcroft, I., Lemke, J.N., Simonelli, M., Hague, R., Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing. Scr. Mater. 142 (2018), 121–125, 10.1016/j.scriptamat.2017.08.042.
- Kizhakkinan, U., Seetharaman, S., Raghavan, N., Rosen, D.W., Laser powder bed fusion additive manufacturing of maraging steel: a review. J. Manuf. Sci. Eng., 145, 2023, 110801, 10.1115/1.4062727.
- Nunes, G.C.S., Sarvezuk, P.W.C., Biondo, V., Blanco, M.C., Nunes, M.V.S., De Andrade, A.M.H., Paesano, A., Structural and magnetic characterization of martensitic maraging-350 steel. J. Alloys Compd. 646 (2015), 321–325, 10.1016/j.jallcom.2015.06.008.
- Pardal, J.M., Tavares, S.S.M., Cindra Fonseca, M.P., Da Silva, M.R., Neto, J.M., Abreu, H.F.G., Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300. J. Mater. Sci. 42 (2007), 2276–2281, 10.1007/s10853-006-1317-8.
- Tavares, S.S.M., da Silva, M.R., Neto, J.M., Pardal, J.M., Cindra Fonseca, M.P., Abreu, H.F.G., Magnetic properties of a Ni–Co–Mo–Ti maraging 350 steel. J. Alloys Compd. 373 (2004), 304–311, 10.1016/j.jallcom.2003.11.009.
- Bajaj, P., Hariharan, A., Kini, A., Kürnsteiner, P., Raabe, D., Jägle, E.A., Steels in additive manufacturing: a review of their microstructure and properties. Mater. Sci. Eng.: A, 772, 2020, 138633, 10.1016/j.msea.2019.138633.
- Narasimharaju, S.R., Zeng, W., See, T.L., Zhu, Z., Scott, P., Jiang, X., Lou, S., A comprehensive review on laser powder bed fusion of steels: processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J. Manuf. Process. 75 (2022), 375–414, 10.1016/j.jmapro.2021.12.033.
- Laleh, M., Sadeghi, E., Revilla, R.I., Chao, Q., Haghdadi, N., Hughes, A.E., Xu, W., De Graeve, I., Qian, M., Gibson, I., Tan, M.Y., Heat treatment for metal additive manufacturing. Prog. Mater. Sci., 133, 2023, 101051, 10.1016/j.pmatsci.2022.101051.
- Tian, Y., Palad, R., Jiang, L., Dorin, T., Chadha, K., Aranas, C., The effect of heat treatments on mechanical properties of M789 steel fabricated by laser powder bed fusion. J. Alloys Compd., 2021, 161033, 10.1016/j.jallcom.2021.161033.
- Firdosy, S., Ury, N., Borgonia, J.P., McEnerney, B., Conversano, R., Hofer, R., Hermann, A., Ucar, H., Ravi, V.A., Dillon, R.P., Processing–microstructure–property relationships in a laser-deposited Fe-Co-V alloy. Adv. Eng. Mater., 24, 2022, 2100931, 10.1002/adem.202100931.
- Tian, Y., Palad, R., Aranas, C., Microstructural evolution and mechanical properties of a newly designed steel fabricated by laser powder bed fusion. Addit. Manuf., 36, 2020, 101495, 10.1016/j.addma.2020.101495.
- Palad, R., Tian, Y., Chadha, K., Rodrigues, S., Aranas, C., Microstructural features of novel corrosion-resistant maraging steel manufactured by laser powder bed fusion. Mater. Lett., 275, 2020, 128026, 10.1016/j.matlet.2020.128026.
- Sinico, M., Metelkova, J., Dalemans, T., Thijs, L., Van Hooreweder, B., High speed laser powder bed fusion of M789 tool steel with an optimized 120 µm layer thickness approach. Procedia CIRP 111 (2022), 162–165, 10.1016/j.procir.2022.08.141.
- BÖHLER Edelstahl GmbH & Co KG, M789 AMPO, (2023). 〈https://www.bohler-edelstahl.com/en/products/m789-ampo/〉 (accessed June 15, 2023).
- Datasheet Certified M789 (A), 3D Systems (2021). 〈https://www.3dsystems.com/materials/certified-m789-a〉 (accessed March 17, 2022).
- Datasheet LaserForm Maraging Steel (A), 3D Systems (2017). 〈https://www.3dsystems.com/materials/laserform-maraging-steel〉 (accessed February 15, 2024).
- Tekin, T., Ischia, G., Naclerio, F., Ipek, R., Molinari, A., Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by laser powder bed fusion. Mater. Sci. Eng.: A, 872, 2023, 144921, 10.1016/j.msea.2023.144921.
- Lek, Y.Z., Wang, C., Shen, X., Chen, Z., Ramamurty, U., Zhou, K., Additive manufacturing of corrosion-resistant maraging steel M789 by directed energy deposition. Mater. Sci. Eng.: A, 857, 2022, 144032, 10.1016/j.msea.2022.144032.
- Elangeswaran, C., Gurung, K., Koch, R., Cutolo, A., Van Hooreweder, B., Post-treatment selection for tailored fatigue performance of 18Ni300 maraging steel manufactured by laser powder bed fusion. Fatigue Fract. Eng. Mater. Struct. 43 (2020), 2359–2375, 10.1111/ffe.13304.
- S. Gao, Additive manufacturing Processing and characterization of Fe-Si soft magnetic alloys, phdthesis, Université Bourgogne Franche-Comté, 2021. 〈https://theses.hal.science/tel-03600459〉 (accessed April 18, 2024).
Issue
| Next Materials, vol. 6, 2025, , https://doi.org/10.1016/j.nxmate.2024.100287 |
|