Autors: Gavrailov, D. I., Ibrahim N., Boycheva, S. V.
Title: Improved Alkaline Electrode Configuration and CFD Modeling Comparison between Different Electrolysers
Keywords: alkaline electrolyser, Anion exchange membrane, COMSOL Multiphysics, electrodes

Abstract: Alkaline electrolysis is the most industrially developed hydrogen production approach. Any improvements of alkaline electrolysers (AEL) are aimed at increasing the efficiency of the system. As a result, the most mature technology 'classical' AEL is developed further to Zero-gap AEL by compressing the porous electrodes on both sides of hydroxide anion exchange membrane (AEM) in order to reduce the current losses in the cell. In the present study, an improved AEL electrode configuration is proposed to provide a more compact design and lower electrical losses in the system. This was achieved by increasing the thickness of the electrodes by 10 times and adding hole's structure. Here, three electrolyser designs: classical AEL, AEM, and an improved AEL were modeled by COMSOL Multiphysics software and compared in polarization curves, hydrogen production and efficiency. All designs feature identical active surface areas of 365 cm2 for hydrogen production but vary in overall size. Both the classical AEL and AEM designs are with dimensions of 19 cm × 19 cm. In contrast, the improved AEL design has more compact dimensions of 5 cm × 5 cm, achieving the same hydrogen production capacity with a reduction of 53% and 73% in volume size, respectively. It was observed the lowest working temperature at 2.1V operating voltage is 21.3 °C for the new model comparing with AEL and AEM of 27.8 °C and 68 °C respectively. The findings emphasize the importance of design optimisation in enhancing the practicality of electrolyser technologies.

References

  1. S. Yamaguchi, K. Watanabe, T. Minegishi and M. Sugiyama, "Solar to hydrogen efficiency of 28.2%under natural sunlight achieved by a combination of five-junction concentrator photovoltaic modules and electrolysis cells, " Sustain. Energy Fuels, vol. 7, pp. 13-77-1381, February 2023, DOI: 10.1039/D2SE01754G.
  2. I. Holmes-Gentle, S. Tembhurne and S. Haussener, " Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device, " Nat. Energy, vol. 8, pp. 586-596, April 2023, DOI: 10.1038/s41560-023-01247-2.
  3. T.G. Deutsch, Concentrating on solar for hydrogen, Nat. Energy, vol. 8, pp. 560-561, April 2023, DOI: 10.1038/s41560-023-01256-1.
  4. D. Gavrailov and S. Boycheva, "Study assessment of water electrolysis systems for green production of pure hydrogen and natural gas blending, " IOP Conf. Series: Earth Environ. Sci., vol. 1234, 012004, August 2023, DOI: 10.1088/1755-1315/1234/1/012004.
  5. M. Carmo, D. Fritz, J. Mergel and D. Stolten, "A comprehensive review on PEM water electrolysis, " Int. J. Hydrogen Energy, vol. 38, pp. 4901-4934, April 2013, DOI: 10.1016/j.ijhydene.2013.01.151.
  6. R. Phillips, Ch. Dunnill, "Zero gap cell design for alkaline electrolysis, " PhD Thesis, Energy Safety Research Institute Swansea University, Wales, United Kingdom, March 2019, DOI: 10.13140/RG.2.2.26663.29606.
  7. R. Phillips and C. Dunn, "Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas, " RSC Adv., vol. 6 pp. 100643-100651, October 2016, 100643-100651."
  8. C. Shengmei, L. Ma, Z. Huang, G. Liang and C. Zhi, "In situ/operando analysis of surface reconstruction of transtion metal-based oxygen evolution electrocatalysts, " Cell Reports Phys. Sci., vol. 3, 100729, January 2022, DOI: 10.1016/j.xcrp.2021.100729.
  9. M. Lavorante and J.I. Franco, "Performance of stainless steel 316L electrodes with modified surface to be used in alkaline water electrolyzers, " Int. J. Hydrogen Energy, vol. 41, pp. 9731-9737, June 2016. DOI: 10.1016/j.ijhydene.2016.03.017.
  10. J. Lee, A. Alam and H. Ju, "Multidimensional and transien tmodeling of an alkaline water electrolysis cell, " Int. J. Hydrogen Energy, vol. 46, pp. 13678-13690, November 2020, DOI: 10.1016/j.ijhydene.2020.10.133.
  11. J. Divisek and P. Malinowski, Diaphragm for alkaline electrolysis and process for manufacturing this, January 1986, DE-86-010182, Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.), Germany, EDB-87-031917.
  12. Y. C. Gao, X. Wu and K. Scott, "A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolyzers with non-noble-metal catalysts, " Int. J. Hydrogen Energy, vol. 37, pp. 9524-9528, June 2012. DOI: 10.1016/j.ijhydene.20.
  13. J. Haverkort and H. Rajaei, "Voltage losses in zero-gap alkaline water electrolysis, " J. Power Sources, vol. 497, 229864, June 2021. DOI: 10.1016/j.jpowsour.2021.229864.
  14. E. Tardy, Y. Bultel, F. Druart, A. Bonnefont, M. Guillou and B. Latour, "Three-dimensional modeling of anion exchange membrane electrolysis: A two-phase flow approach, " Energies, vol. 17, 3238, July 2024, DOI: 10.3390/en17133238.
  15. G.H.A. Wijaya, K.S. Im and S.Y. Nam, "Advancements in commercial anion exchange membranes: A Review of membrane properties in water electrolysis applications, " Desalination Water Treat., vol. 320, 100605, October 2024. DOI: 10.5004/dwt.2023.100605.
  16. B. Yang, M. Jafarin, N. Freidoonimehr and M. Arjomandi, "Alkaline membrane-free water electrolyzer for liquid hydrogen production, " Renew. Energy, vol. 233, 121172, October 2024. DOI: 10.1016/j.renene.2023.10.052.
  17. D. Aikens, "Electrochemical methods: Fundamentals and applications, " J. Chem. Edu., vol. 60, January 1983. DOI: 10.1021/ed060pA25.
  18. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications, " Progr. Energy Combust. Sci., 36, pp. 307-326, 2010. DOI: 10.1016/j.pecs.2009.11.002.
  19. Z. Abdin, C.J. Webb and E.MacA. Gray, "Modeling and Simulation of an Alkaline Electrolyzer Cell, " Energy, vol. 138, pp. 316-331, November 2017. DOI: 10.1016/j.energy.2017.07.085.
  20. N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele and C. Bock, "Anion-exchange membrane water electrolyzers, " vol. 122, pp. 11830-11895, July 2022, DOI: 10.1021/acs.chemrev.1c00854.
  21. N.U. Hassan, M. Mandal, B. Zulevi, P. Kohl and W.E. Mustain, "Understanding and improving anode performance in an alkaline membrane electrolyzer using statistical design of experiments, " Electrochim. Acta, vol. 409, 140001, March 2022, DOI: 10.1016/j.electacta.2022.140001.
  22. Z. Zakaria and S. K. Kamarudin, "A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization, " Int. J. Energy Res., vol. 45, pp. 18337-18354, June 2021, DOI: 10.1002/er.6983.
  23. B.M.Z. Liu, R.I. Masel, J.P. Sculley, Z.R. Ni and L. Meroueh, "Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes, " Int. J. Hydrogen Energy, vol. 46, January 2021, pp. 3379-3386, DOI: 10.1016/j.ijhydene.2020.10.244.
  24. Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu, H. Jiang and C. Li, "Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation, Energy Chem., " vol. 4, September 2022, 100087, DOI: 10.1016/j.enchem.2022.100087.
  25. A.M.I.N. Azam, T. Ragunathan, N.N. Zulkefli, M.S. Masdar, E.H. Majlan, R.M. Yunus, N.S. Shamsul, T. Husaini and S.N.A. Shaffee, "Investigation of performance of anion exchange membrane (AEM) electrolysis with different operating conditions, " Polymers, vol. 15, 1301, March, 2023, DOI: 10.3390/polym15051301.
  26. A. Trattner, M. Hoglinger, M.-G. Macherhammer and M. Sartory, "Renewable hydrogen: Modular concepts from production over storage to the consumer, " Chem. Ing. Tech., vol. 93, pp. 706-716, January 2021, DOI: 10.1002/cite.202000197.
  27. A. Franco and C. Giovannini, " Recent and future advances in water electrolysis for green hydrogen generation: Critical analysis and perspectives, Sustainability, vol. 15, 16917, December 2023, DOI: 10.3390/su152416917.
  28. F. Gambou, D. Guilbert, M. Zasadzinski and H. Rafaralahy, "A comprehensive survey of alkaline electrolyzer modeling: Electrical domain and specific electrolyte conductivity, " Energies, vol. 15, 3452, May 2022, DOI: 10.3390/en15093452.
  29. "The Future of Hydrogen: Seizing Today's Opportunities" published by the International Energy Agency (IEA), June 2019 www.iea.org/reports/the-future-of-hydrogen".
  30. L.J. Titheridge and A.T. Marshall, "Techno-economic modelling of AEM electrolysis systems to identify ideal current density and aspects requiring further research, " Int. J. Hydrogen Energy, vol. 49, pp. 518-532, January 2024, DOI; 10.1016/j.ijhydene.2.
  31. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho and X.C. Adroher, "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, " Appl. Energy, vol. 88, pp. 981-1007, April 2011, DOI: 10.1016/j.apenergy.2010.09.030.
  32. M. El-Shafie, "Hydrogen production by water electrolysis technologies: A review, " Results in Engineering, vol. 20, 101426, December 2023, DOI: 10.1016/j.rineng.2023.101426.
  33. I.Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review, " Renew. Sustain. Energy Rev., vol. 81, pp. 1690-1704, January 2018, DOI: 10.1016/j.rser.2017.05.258.
  34. K. Hu, J. Fang, X. Ai, D. Huang, Z. Zhong, X. Yang and L. Wang, "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling, " Appl. Energy, vol. 312, 118788, April 2022, DOI: 10.1016/j.apenergy.2022.118788.
  35. R. Rzehak and E. Krepper, "Euler-Euler simulation of masstransfer in bubbly flows, Chem. Eng. Sci., vol. 155, pp. 459-468, November 2016, DOI: 10.1016/j.ces.2016.08.036.
  36. COMSOL Multiphysics, Material Library, Electrochemistry Interfaces, https://doc.comsol.com/6.2/docserver/#!/com.comsol.help.corr/c orr-ug-electrochem.06.012.html.
  37. M. Zhang, L. Gao, L. Yang, G. Shan, Y. Wang, X. Huo, W. Li and J. Zhang, "Temperature distribution evolution in zero-gap alkaline water electrolyzer: Experimental and modeling, " Fuel, vol. 367, 131418, July 2024. DOI: 10.1016/j.fuel.2023.131418.
  38. T.G. Douglas, A. Cruden and D. Infield, "Development of an ambient temperature alkaline electrolyzer for dynamic pperation with renewable energy sources, " Int. J. Hydrogen Energy, vol. 38, pp. 723-739, January 2013. DOI: 10.1016/j.ijhydene.2012.10.001..

Issue

CIEES 2024 - IEEE International Conference on Communications, Information, Electronic and Energy Systems, pp. 205627, 2024, , https://doi.org/10.1109/CIEES62939.2024.10811289

Copyright IEEE Xplore

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus