Autors: Gospodinova, D. N., Tsekov, R. P., Neznakomova, M. P. Title: Indirect Measurement of Thermal Insulation Properties of Two-Layer Functional Textile Structures Incorporating Nanomaterials Keywords: beeswax (BW), chlorella), nonwoven textile materials, organic algae (spirulina, polyvinilalcohol (PVA), textile composite, thermal conductivity, thermal insulationAbstract: This study presents an expeditious and efficacious methodology for the preliminary assessment of thermal properties in textile composites, specifically a conventional denim-type cotton fabric and an applied nanofiber mat of varying compositions. Thermal conductivity was determined utilizing a ThermaCAM® P45 thermal imaging camera (FLIR) and corresponding software. A standard electrospinning technique was employed to produce a nanomat from four distinct types of two-component solutions based on polyvinylalcohol (PVA): pure PVA, PVA combined with beeswax (PVA/BW), PVA with two species of algae, Chlorella (PVA/Ch), and Spirulina (PVA/Sp). The findings are presented for the mass, thickness, air, and vapor permeability of the nanomat, contingent upon the composition of the polymer two-component solution. This investigation demonstrates that the cotton-PVA/BW structure exhibits superior thermal insulation properties, with a λ value of 0.157 W/mK, whereas pure Denim exhibits a λ value of 0.2543 W/mK. References - S. Koksharov, N. Kornilova, and Y. Shammut, ‘Design of composite materials for clothes’, MATEC Web Conf., vol. 315, p. 03001, 2020, doi: 10.1051/matecconf/202031503001.
- A. Rawal, A. Majumdar, and V. Kumar, ‘Textile architecture for composite materials: back to basics’, Oxf. Open Mater. Sci., vol. 3, no. 1, pp. 1–9, Sep. 2023, doi: 10.1093/oxfmat/itad017.
- S. Baxter, ‘The thermal conductivity of textiles’, Proc. Phys. Soc., vol. 58, no. 1, p. 105, Jan. 1946, doi: 10.1088/0959-5309/58/1/310.
- J. Xue, T. Wu, Y. Dai, and Y. Xia, ‘Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications’, Chem. Rev., vol. 119, no. 8, pp. 5298–5415, Apr. 2019, doi: 10.1021/acs.chemrev.8b00593.
- G. C. Türkoğlu, N. Khomarloo, E. Mohsenzadeh, D. N. Gospodinova, M. Neznakomova, and F. Salaün, ‘PVA-Based Electrospun Materials—A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape—A Review’, Int. J. Mol. Sci., vol. 25, no. 3, Art. no. 3, Jan. 2024, doi: 10.3390/ijms25031668.
- O. I. Kalaoglu-Altan, B. K. Kayaoglu, and L. Trabzon, ‘Improving thermal conductivities of textile materials by nanohybrid approaches’, iScience, vol. 25, no. 3, Mar. 2022, doi: 10.1016/j.isci.2022.103825.
- S. Islam, S. Md. Mominul Alam, and S. Akter, ‘Mathematical investigation of the thermal conductivity of fabrics using thermal equation’, Mater. Today Proc., vol. 46, pp. 413–424, Jan. 2021, doi: 10.1016/j.matpr.2020.09.411.
- H. Sabri, R. Zouhaier, and J. Abdelmajid, ‘Effect of textile woven fabric parameters on its thermal properties’, Ind. Textila, vol. 70, no. 01, pp. 15–20, Mar. 2019, doi: 10.35530/IT.070.01.1514.
- Y. Yang, H. Wang, H. Yan, Y. Ni, and J. Li, ‘Modeling and influence on effective thermal conductivity of woven fabrics based on structure parameters’, Int. J. Cloth. Sci. Technol., vol. 35, no. 6, pp. 938–951, Jan. 2023, doi: 10.1108/IJCST-12-2021-0180.
- L. V. Haule and L. Nambela, ‘Chapter 8 - Sustainable application of nanomaterial for finishing of textile material’, in Green Nanomaterials for Industrial Applications, U. Shanker, C. M. Hussain, and M. Rani, Eds., in Micro and Nano Technologies. Elsevier, 2022, pp. 177–206. doi: 10.1016/B978-0-12-823296-5.00011-3.
- F. Iwona, S. Wioletta, and W. Małgorzata, ‘Analysis of Selected Physical Properties of Membrane Fabrics Infl uencing the Utility Comfort of Clothing — Fibres & Textiles in Eastern Europe’, FIBRES Text. East. Eur., vol. 17, no. 6, pp. 50–55, 2009.
- Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, ‘A review on polymer nanofibers by electrospinning and their applications in nanocomposites’, Compos. Sci. Technol., vol. 63, no. 15, pp. 2223–2253, Nov. 2003, doi: 10.1016/S0266-3538(03)00178-7.
- P. W. Gibson, C. Lee, F. Ko, and D. Reneker, ‘Application of Nanofiber Technology to Nonwoven Thermal Insulation’, J. Eng. Fibers Fabr., vol. 2, no. 2, p. 155892500700200204, Jun. 2007, doi: 10.1177/155892500700200204.
- S. Parmar and P. Khatwani, ‘Textile Structural Composite and It’s Applications’, Int. J. Eng. Res. Appl., vol. 10, no. 5, pp. 21–25, May 2020, doi: 10.9790/9622-1005042125.
- M. P. Neznakomova and D. N. Gospodinova, ‘Express Evaluation of the Thermal Insulation Properties of Bulk Non-Woven Textile’, in 2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Jul. 2024, pp. 1–4. doi: 10.1109/ICEST62335.2024.10639807.
- L. Hes, ‘PERMETEST’. SENSORA INSTRUMENTS & CONSULTING. [Online]. Available: www.sensora.eu/PermetestManual09.pdf
- Y. Panahi, B. Darvishi, N. Jowzi, F. Beiraghdar, and A. Sahebkar, ‘Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties’, Curr. Pharm. Des., vol. 22, no. 2, pp. 164–173, doi: 10.2174/1381612822666151112145226.
- C. Safi, B. Zebib, O. Merah, P.-Y. Pontalier, and C. Vaca-Garcia, ‘Morphology, composition, production, processing and applications of Chlorella vulgaris: A review’, Renew. Sustain. Energy Rev., vol. 35, pp. 265–278, Jul. 2014, doi: 10.1016/j.rser.2014.04.007.
- D. N. Gospodinova, M. P. Neznakomova, and K. G. Milanov, ‘Friendly Software-Based Method for Evaluating the Electromagnetic Field Influence at Electrospinning’, in 2023 58th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Jun. 2023, pp. 283–286. doi: 10.1109/ICEST58410.2023.10187357.
Issue
| 2024 16th Electrical Engineering Faculty Conference, BulEF 2024, 2024, , https://doi.org/10.1109/BULEF63204.2024.10794908 |
Copyright IEEE |