Autors: Gechev, T. M., Nedelchev, K. I., Kralov, I. M.
Title: Autogiros: Review and Classification
Keywords: autogiro, autogyro, autorotation, aviation, classification, engine, gyroplane, review

Abstract: The article reviews autogiros, concentrating on their flight history, development, application, flight principle, components, and advantages over other aircraft. Firstly, the history of autogiros is presented, focusing on breakthrough inventions and clarifying their significance for overall rotorcraft development. Then, contemporary scientific research on the autogiro is reviewed in detail, and the available research gap is determined. The flight principle and technical fundamentals of autogiros are also briefly discussed, and a comparison between autogiros, helicopters, and fixed-wing aircraft is performed. Autogiros’ applications for civil, military, and mixed purposes are pointed out and schematically presented. The main part of the article comprises an overview of the different components and systems in the structure of the reviewed aircraft, including the main rotor, propeller, engine, cockpit, and others. Additionally, a comprehensive classification mostly concerning contemporary and homologated autogiros is described and schematically presented. Experimental and compound gyroplane designs are also examined and marked in the classification. The aircraft are categorized depending on the main structure type, mast availability, number of seats, number of rotors and rotor blades, rotor and mast position, propeller and tail type and position, pre-rotator type, and power source. The idea of different autogiro variants presented in the classification is enhanced with visual examples. This work is an addition to the efforts of promoting autogiros and research on them. It offers complete information regarding the aircraft and could serve as a kind of starting point for engineers in the design process of such types of flying machines.

References

  1. Leishman J.G. Development of the Autogiro: A Technical Perspective J. Aircr. 2004 41 765 781 10.2514/1.1205
  2. Duda H. Sachs F. Seewald J. Rohardt C.-H. Effects of Rotor Contamination on Gyroplane Flight Performance Proceedings of the 41st European Rotorcraft Forum 2015 Munich, Germany 1–4 September 2015
  3. Harris F.D. Introduction to Autogyros, Helicopters, and Other V/STOL Aircraft: Overview and Autogyros National Aeronautics and Space Administration, Ames Research Center Silicon Valley, CA, USA 2011 978-0-615-47845-6
  4. Wang Y. Guo L. Guo Z. Wu L. Bing F. Hu Q. Sun Z. Research and Performance Optimization of Jump-Takeoff in Autogyros Aerospace 2023 10 680 10.3390/aerospace10080680
  5. NIKI Rotor Aviation Available online: https://nikiaviation.com/ (accessed on 20 August 2024)
  6. Duda H. Sachs F. Seewald J. Lorenz S. Dynamic Rollover of Gyroplanes during Landing—Cause and Prevention CEAS Aeronaut. J. 2022 13 521 533 10.1007/s13272-022-00575-5
  7. Roushkova B. Bulgarian Gyrocopter Maker Wins Innovative Enterprise Award Available online: https://www.bta.bg/en/news/economy/374474-bulgarian-gyrocopter-maker-wins-innovative-enterprise-award (accessed on 20 August 2024)
  8. European Commission Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on Common Rules in the Field of Civil Aviation and Establishing a European Union Aviation Safety Agency Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32018R1139 (accessed on 3 January 2025)
  9. Civil Aviation Administration of Bulgaria REGULATION No. N-1 of 9.01.2014 on Registration, Initial Determination, Maintenance of Airworthiness, Operation of Ultralight Aircraft, Training and Issuance of Pilot Certificates and Control over Them and Air Sports Available online: https://www.caa.bg/en/node/2694 (accessed on 3 January 2025)
  10. AutoGyro Passionate Inspired. Driven. Visionary. Available online: https://www.auto-gyro.com/ (accessed on 20 August 2024)
  11. Centennial of Flight Commission. Juan De La Cierva Available online: https://www.centennialofflight.net/essay/Dictionary/cierva/DI17.htm (accessed on 1 October 2024)
  12. Charnov B.H. Rediscovering the Autogiro: Cierva, Pitcairn and the Legacy of Rotary-Wing Flight Hofstra University Hempstead, NY, USA 2002
  13. Harrison J.-P. Field M. The Cierva Autodynamic Rotor NASA Washington, DC, USA 2015
  14. Wikimedia Commons Contributors, “File:Juan de la Cierva C.6 autogyro.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Cierva_C.6#/media/File:Juan_de_la_Cierva_C.6_autogyro.jpg (accessed on 1 October 2024)
  15. Aviastar Cierva C.6 1924 Available online: https://www.aviastar.org/helicopters_eng/cierva_c-6.php (accessed on 1 October 2024)
  16. Centennial of Flight Commission The Contributions of the Autogyro Available online: https://www.centennialofflight.net/essay/Rotary/autogiro/HE3.htm (accessed on 21 August 2024)
  17. Wikimedia Commons Contributors, “File:Cierva C.17 3-View L’Air June 1,1929.png”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Cierva_C.17#/media/File:Cierva_C.17_3-View_L’Air_June_1,1929.png (accessed on 12 January 2024)
  18. Wikimedia Commons Contributors, “File:Cierva C.30a G-ACUU Rearsby 02.06.51 edited-5.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Cierva_C.30#/media/File:Cierva_C.30a_G-ACUU_Rearsby_02.06.51_edited-5.jpg (accessed on 1 November 2024)
  19. Dinger’s Aviation Pages Hafner Autogyro and Helicopter Projects Available online: https://dingeraviation.net/rota/hafnerhelios.html (accessed on 20 August 2024)
  20. Autogyro History and Theory Available online: https://www.jefflewis.net/autogyros.html (accessed on 23 August 2024)
  21. Wikimedia Commons Contributors, “File:Igor Sikorsky 300.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Vought-Sikorsky_VS-300#/media/File:Igor_Sikorsky_300.jpg (accessed on 20 August 2024)
  22. Wikimedia Commons Contributors, “File:Bensen B-8M.jpg”, Wikimedia Commons Available online: https://commons.wikimedia.org/wiki/File:Bensen_B-8M.jpg (accessed on 12 November 2024)
  23. Harrison J.-P. The Cierva Gyrodyne NASA Washington, DC, USA 2008
  24. Charnov B.H. The Fairey Rotodyne: An Idea Whose Time Has Come–Again? Praeger Publishers Westport, CT, USA 2003
  25. The Helicopter Museum Fairey Rotodyne Available online: https://helimuseum.com/heli.php?ident=rotodyne (accessed on 26 September 2024)
  26. Wikimedia Commons Contributors, “File:Fairey Rotodyne XE521.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Fairey_Rotodyne#/media/File:Fairey_Rotodyne_XE521.jpg (accessed on 26 September 2024)
  27. Goebel G. Autogyros, Gyrocopters, & Gyroplanes Available online: https://www.airvectors.net/avgyro.html (accessed on 26 September 2024)
  28. Aeromedia—The Italian Aerospace Information Web Some Significant Events Regarding the Autogyro Saga Available online: http://www.aeromedia.it/autohigb.html (accessed on 3 January 2025)
  29. Houston S.S. Thomson D.G. Calculation of Rotorcraft Inflow Model Coefficients Using Blade Flapping Measurements J. Aircr. 2009 46 1569 1576 10.2514/1.40540
  30. Thomson D.G. Houston S.S. Spathopoulos V.M. Experiments in Autogiro Airworthiness for Improved Handling Qualities J. Am. Helicopter Soc. 2005 50 295 301 10.4050/1.3092866
  31. Thomson D. Houston S. Advances in the Understanding of Autogyro Flight Dynamics Proceedings of the 64th American Helicopter Society Annual Forum Montreal, CA, USA 29 April–1 May 2008
  32. Houston S.S. Validation of a Rotorcraft Mathematical Model for Autogyro Simulation J. Aircr. 2000 37 403 409 10.2514/2.2640
  33. Houston S. Thomson D. On the Modelling of Gyroplane Flight Dynamics Prog. Aerosp. Sci. 2017 88 43 58 10.1016/j.paerosci.2016.11.001
  34. Zilli B. Radio Controlled Autogiro Aerodynamic Design a.s.d G.A.S.T Casarsa della Delizia, Italy 2016 10.13140/RG.2.1.4976.6807
  35. Cai Z. Liu N. Zhao J. Wang Y. Control and Dynamics Analysis for Miniature Autogyro and Compound Autogyro Sci. China Inf. Sci. 2019 62 10208 10.1007/s11432-018-9577-3
  36. Qing L. Zhihao C. Yingxun W. Dynamics, Stability and Control Characteristics of Unmanned Compound Autogyro Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC) Nanjing, China 12–14 August 2016 753 758
  37. Angelov I.A. Simeonov S.H. Determination of Static and Dynamic Stability Characteristics of a Sailplane Based on CFD Analysis Part 1 Static Stability Proceedings of the 10th International Scientific Conference “TechSys 2021”–Engineering, Technologies and Systems Plovdiv, Bulgaria 27–29 May 2022 050004
  38. Figat M. Aerodynamics Analysis of the Main Rotor Influence on the Static Stability of the Gyroplane Aircr. Eng. Aerosp. Technol. 2017 89 663 670 10.1108/AEAT-01-2017-0047
  39. Czyż Z. Ilhan I. Akcay M. Czarnigowski J. Air Flow Analysis Around the Autogyro Fuselage J. Technol. Exploit. Mech. Eng. 2017 3 13 20 10.35784/jteme.533
  40. Czyż Z. Karpiński P. Łusiak T. Szczepanik T. Numerical Analysis of the Influence of Particular Autogyro Parts on the Aerodynamic Forces ITM Web Conf. 2017 15 07008 10.1051/itmconf/20171507008
  41. Czyż Z. Łusiak T. Karpiński P. Czarnigowski J. Numerical Investigation of the Gyroplane Longitudinal Static Stability for the Selected Stabilizer Angles J. Phys. Conf. Ser. 2018 1101 012003 10.1088/1742-6596/1101/1/012003
  42. Czyż Z. Karpiński P. Numerical Analysis of the Impact of Sideslip Angle on Load of the Gyrocopter Stabilizers Aviation 2020 23 114 122 10.3846/aviation.2019.11924
  43. Czyż Z. Karpiński P. Skiba K. Siadkowska K. Numerical Analysis of the Airflow around the Gyro-One Autogyro J. Phys. Conf. Ser. 2021 1736 012049 10.1088/1742-6596/1736/1/012049
  44. Czyż Z. Magryta P. Szlachetka M. Experimental Investigation of the Impact of Flight Speed on Drag Force in the Autogyro Model Adv. Sci. Technol. Res. J. 2015 9 89 95 10.12913/22998624/2370 39684991
  45. Novák A. Ścisłowski K. Kliza R. Bąbel R. Czyż Z. Karpiński P. Experimental Investigation of Performance of the Rotorcraft Directional Rudder Commun. Sci. Lett. Univ. Zilina 2024 26 A1 A10 10.26552/com.C.2024.007
  46. Vu N. Lee Y.-J. Lee J.-W. Kim S. Chung I.J. Configuration Design and Optimisation Study of a Compound Gyroplane Aircr. Eng. Aerosp. Technol. 2011 83 420 428 10.1108/00022661111173298
  47. Petritoli E. Leccese F. Unmanned Autogyro for Advanced SAR Tasks: A Preliminary Assessment Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace) Pisa, Italy 22–24 June 2020 615 619
  48. Petritoli E. Leccese F. Unmanned Autogyro for Mars Exploration: A Preliminary Study Drones 2021 5 53 10.3390/drones5020053
  49. Gellida-Coutino C. La Cruz V.D.-D. Sanchez-Orta A. Garcia-Salazar O. Castillo P. The Tailsitter Autogiro UAV: Modeling, Design, and CFD Simulation Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS) Dubrovnik, Croatia 21–24 June 2022 516 525
  50. Bannehr L. Kirschke T. Koppers L. Ulrich C. Possible Applications of a Gyrocopter in the Field of Environmental Research Available online: https://gispoint.de/fileadmin/user_upload/paper_gis_open/537555039.pdf (accessed on 14 November 2024)
  51. Bzowska-Bakalarz M. Bieganowski A. Bereś P.K. Dammer K.-H. Ostroga K. Siekaniec Ł. Wieczorek A. Monitoring the State of Agrocenosis with the Use of Remote-Sensing Gyro System Proceedings of the Farm Machinery and Processes Management in Sustainable Agriculture, IX International Scientific Symposium Lublin, Poland 22 November 2017 Department of Machinery Exploittation and Management of Production Processes, University of Life Sciences Lublin, Poland 2017 64 69
  52. Bzowska-Bakalarz M. Bulak P. Bereś P.K. Czarnigowska A. Czarnigowski J. Karamon B. Pniak M. Bieganowski A. Using Gyroplane for Application of Trichogramma Spp. against the European Corn Borer in Maize Pest. Manag. Sci. 2020 76 2243 2250 10.1002/ps.5762 31981403
  53. Bzowska-Bakalarz M. Trendak A. Marszałek D. Pniak M. Bagar M. Czarnigowski J. Aerial Method of Plant Protection with the Use of an Autogyro for Sustainable Agriculture Agric. Agric. Sci. Procedia 2015 7 54 58 10.1016/j.aaspro.2015.12.031
  54. Wang S. Chen W.L. Dun W.Q. Bu L.L. Dong F.C. Design and Experiment of Flight Path Control System of Unmanned Autogyro MATEC Web Conf. 2016 44 01065 10.1051/matecconf/20164401065
  55. Wu W. A Controller for Tracking Steep Glide Slopes for an Unmanned Gyroplane Br. J. Appl. Sci. Technol. 2015 10 1 11 10.9734/BJAST/2015/17376
  56. Czyż Z. Łusiak T. Czyz D. Kasperek D. Analysis of the Pre-Rotation Engine Loads in the Autogyro Adv. Sci. Technol. Res. J. 2016 10 169 176 10.12913/22998624/64015
  57. Czyż Z. Wendeker M. Measurements of Aerodynamic Interference of a Hybrid Aircraft with Multirotor Propulsion Sensors 2020 20 3360 10.3390/s20123360 32545745
  58. Czarnigowski J. Trendak M. Aircraft Piston Engine Load Distribution in Steady State Operating Conditions Combust. Engines 2023 193 29 35 10.19206/CE-160505
  59. Czarnigowski J. Rękas D. Ścisłowski K. Trendak M. Skiba K. Analysis of Operating Parameters of the Aircraft Piston Engine in Real Operating Conditions Combust. Engines 2021 60 83 89 10.19206/CE-141890
  60. Trendak M. Czarnigowski J. Influence of Oil Service Life on Selected Performance Parameters of an Aircraft Piston Engine Combust. Engines 2023 194 78 83 10.19206/CE-168334
  61. Vainilavicius D. Augutis V. Malcius M. Bezaras A. Analysis of Autogyro Rotor Balancing and Vibration Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace) Benevento, Italy 4–5 June 2015 416 420
  62. Czarnigowski J. Empirical Tests of Stress in Gyroplane Rotor During Flight Adv. Sci. Technol. Res. J. 2020 14 107 117 10.12913/22998624/120928
  63. Fang X. Benzerrouk H. Landry R. Jr. Energy Management and Guidance for Gyroplane Autonomous Unpowered Landing Based on Onboard Trajectory Generation IFAC-Pap. 2019 52 250 255 10.1016/j.ifacol.2019.11.251
  64. Lin Q. Cai Z. Wang Y. Design, Model and Attitude Control of a Model-Scaled Gyroplane Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference Yantai, China 8–10 August 2014 1282 1287
  65. Stalewski W. Simulation and Optimization of Control of Selected Phases of Gyroplane Flight Computation 2018 6 16 10.3390/computation6010016
  66. Pruter I. Duda H. A New Flight Training Device for Modern Lightweight Gyroplanes Proceedings of the AIAA Modeling and Simulation Technologies Conference; American Institute of Aeronautics and Astronautics Portland, OR, USA 8–11 August 2011
  67. Rimkus S. Das T. An Application of the Autogyro Theory to Airborne Wind Energy Extraction Proceedings of the American Society of Mechanical Engineers Palo Alto, CA, USA 21–23 October 2013 Volume 3 V003T49A003
  68. Rancourt D. Bolduc-Teasdale F. Bouchard E.D. Anderson M.J. Mavris D.N. Design Space Exploration of Gyrocopter-Type Airborne Wind Turbines Wind Energy 2016 19 895 909 10.1002/we.1873
  69. McConnell J. Das T. Equilibrium Behavior of a Tethered Autogyro: Application in Extended Flight and Power Generation J. Appl. Mech. 2022 89 091003 10.1115/1.4054927
  70. Santiago J.F. Cruz S.S. Leal R.L. Hybrid Autogyro: Model and Longitudinal Control for Wind Gust Energy Conversion Using Autorotation Adv. Sci. Technol. Eng. Syst. J. 2020 5 393 398 10.25046/aj050251
  71. Ejaz R. Good G. Sharma S. Trancossi M. Energetic Design of a New Autogyro Aircraft with Cyclorotors with Possibility of Energy Harvesting Int. J. Heat Technol. 2017 35 S405 S412 10.18280/ijht.35Sp0155
  72. Ranjbar M. Nasrazadani S. Zanganeh H. Gharali K. Reaching the Betz Limit Experimentally and Numerically Energy Equip. Syst. 2019 271 278 10.22059/EES.2019.36563
  73. Federal Aviation Administration (FAA) Rotorcraft Flying Handbook Pentagon Publishing Snellville, GA, USA 2000
  74. Magni Gyro Available online: http://www.magnigyro.it/en (accessed on 13 November 2024)
  75. Wikimedia Commons Contributors, “File:Bensengyrocopter001 (cropped).jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Bensen_B-8 (accessed on 3 December 2024)
  76. Wikimedia Commons Contributors, “File:Autogyro Calidus in flight (frame).jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/AutoGyro_Calidus#/media/File:Autogyro_Calidus_in_flight_(frame).jpg (accessed on 12 November 2024)
  77. AutoGyro CALIDUS | Smooth Stable. Fast. Available online: https://www.auto-gyro.com/calidus-nca/ (accessed on 13 November 2024)
  78. Wikimedia Commons Contributors, “File:24ABF (1).jpg”, Wikimedia Commons Available online: https://commons.wikimedia.org/w/index.php?title=File:24ABF_(1).jpg&oldid=950596856 (accessed on 12 November 2024)
  79. Wikimedia Commons Contributors, “File:Utah Olympics Hawk 4.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Skyworks_Aeronautics#/media/File:Utah_Olympics_Hawk_4.jpg (accessed on 14 November 2024)
  80. Aviastar Groen Hawk H4 Project Available online: http://www.aviastar.org/helicopters_eng/groen_hawk.php (accessed on 14 November 2024)
  81. Trendak T6-Prototype-Aviation Artur Trendak Available online: https://trendak.eu/en/history/t6-prototype/ (accessed on 14 November 2024)
  82. Rotorcraft.info Fusion Copter: FC-4 Available online: https://rotorcraft.info/fe/en/acft/1059/GeneralData (accessed on 18 November 2024)
  83. Wikimedia Commons Contributors, “File:McCulloch J-2 Aero Super Gyroplane—GPN-2000-001904.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/McCulloch_J-2#/media/File:McCulloch_J-2_Aero_Super_Gyroplane_-_GPN-2000-001904.jpg (accessed on 18 November 2024)
  84. Wikimedia Commons Contributors, “File:Autogyro.(photo2) (4638352031).jpg”, Wikimedia Commons Available online: https://commons.wikimedia.org/wiki/File:Autogyro.(photo2)_(4638352031).jpg (accessed on 13 November 2024)
  85. Wikimedia Commons Contributors, “File:Littlewing.Jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Little_Wing_Autogyro#/media/File:Littlewing.JPG (accessed on 18 November 2024)
  86. Wikimedia Commons Contributors, “File:Giros-2 Eger.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Russian_Gyroplanes_Gyros-2_Smartflier#/media/File:Giros-2_Eger.jpg (accessed on 11 December 2024)
  87. Wikimedia Commons Contributors, “File:GyRos-2 Smartflayer (14672555473).jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Russian_Gyroplanes_Gyros-2_Smartflier#/media/File:GyRos-2_Smartflayer_(14672555473).jpg (accessed on 13 November 2024)
  88. Wikimedia Commons Contributors, “File:PAL-V Liberty Flying Car Fullsize SRGB 021.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/PAL-V_Liberty#/media/File:PAL-V_Liberty_Flying_Car_Fullsize_SRGB_021.jpg (accessed on 18 November 2024)
  89. Wikimedia Commons Contributors, “File:Avian 2-180 Gyroplane.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Avian_Gyroplane#/media/File:Avian_2-180_Gyroplane.jpg (accessed on 12 November 2024)
  90. Taylor J.W.R. Jane F.T. Jane’s All the World’s Aircraft, 1970–1971 Jane’s Yearbooks Sampson Low, Marston & Company Ltd. London, UK 1970 978-0-354-00067-3
  91. ARC Aerosystems ARC Aerosystems Announces the Reintroduction of the Pegasus Aircraft, Tapping into Proven Technology Got Advanced Air Mobility Solutions Available online: https://arcaerosystems.com/arc-aerosystems-announces-the-reintroduction-of-the-pegasus-aircraft-tapping-into-proven-technology-got-advanced-air-mobility-solutions/ (accessed on 18 November 2024)
  92. Koppelberg J. Weintraub D. Jeschke P. Acoustic Pre-Design Studies of Ducted Fans for Small Aircraft CEAS Aeronaut. J. 2022 13 877 889 10.1007/s13272-022-00604-3
  93. Zhao Y. Tian Y. Wan Z. Aerodynamic Characteristics of a Ducted Fan Hovering and Transition in Ground Effect Aerospace 2022 9 572 10.3390/aerospace9100572
  94. Wikimedia Commons Contributors, “File:RAF-2000-ZU-DYP.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Rotary_Air_Force_RAF_2000#/media/File:RAF-2000-ZU-DYP.jpg (accessed on 11 December 2024)
  95. RAF OVERVIEW–RAF2000 FI EJ2.2 Available online: https://rafsa.co.za/raf2000-fi-ej2-2/ (accessed on 18 November 2024)
  96. TensorTechs Tensor Technology Available online: https://www.tensor.aero/technology/ (accessed on 18 November 2024)
  97. Wikimedia Commons Contributors, “File:Erstflug des Technology Demonstrator Tensor 600X.jpg”, Wikimedia Commons Available online: https://de.wikipedia.org/wiki/Tensor_AG#/media/Datei:Erstflug_des_Technology_Demonstrator_Tensor_600X.jpg (accessed on 18 November 2024)
  98. Rotax Aircraft Engines 912 iS Sport | iSc Sport Available online: https://www.flyrotax.com/products/912-is-sport-isc-sport (accessed on 18 November 2024)
  99. Rotax Aircraft Engines Rotax 912S Available online: https://en.wikipedia.org/wiki/Rotax_912#/media/File:3Xtrim3X55TrainerC-IFUF46Rotax912Sinstallation.jpg (accessed on 18 November 2024)
  100. Wikipedia Carter PAV. Article Available online: https://en.wikipedia.org/wiki/Carter_PAV#cite_note-nbfPav-13 (accessed on 15 November 2024)
  101. Wikimedia Commons Contributors, “File:CarterPAV.jpg”, Wikimedia Commons Available online: https://en.wikipedia.org/wiki/Carter_PAV#/media/File:CarterPAV.jpg (accessed on 19 November 2024)

Issue

Aerospace, vol. 12, 2025, , https://doi.org/10.3390/aerospace12010048

Copyright MDPI

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science