Autors: Mitov, A. S., Nikolov, N. D., Kralov, I. M.
Title: Influence of the Radial Gap on the External Gear Pump Performance
Keywords: CFD, efficiency, external gear pump, flow rate, radial gap

Abstract: The paper presents a numerical and experimental study of the radial gap influence on the external gear pump performance. The numerical study is performed with a two-dimensional (2D) computational fluid dynamics (CFD) model developed and advanced in previous authors’ works. The experimental study is carried out on a laboratory test bench. The presented numerical results are accurate in the entire operating range (500–3500 RPM) of the pump, which is confirmed by comparisons between the CFD results, experimental data, and manufacturer’s technical documentation. The comparative analysis shows that the differences obtained during the verifications are in the range of −6.44% to 2.48%. An original methodology has been developed that allows us to obtain the volumetric efficiency and overall efficiency characteristics as a function of the rotation frequency of the pump at different values of the radial gap, using the manufacturer’s data for the same characteristics at a nominal radial gap and the results of CFD simulations. The analysis of the numerical and experimental results shows that a gap size of 0.04 mm is close to the limit value for the investigated pump, if it is not operated at a rotational frequency above the nominal. The presented methodology can also be applied to other types of hydraulic displacement pumps in order to evaluate their performance in the wear process and to predict the maximum allowable value of a specific design parameter under different operating modes.

References

  1. Findeisen D. Helduser S. Ölhydraulik Springer Berlin/Heidelberg, Germany 2015
  2. ISO 3662:1976 Hydraulic Fluid Power—Pumps and Motors—Geometric Displacements International Organization for Standardization Geneva, Switzerland 1976
  3. Ivantysyn J. Ivantysynova M. Hydrostatic Pumps and Motors: Principles, Design, Performance, Modelling, Analysis, Control and Testing Academia Books International New Delhi, India 2001
  4. Beacham T.E. High-Pressure Gear Pumps Proc. Inst. Mech. Eng. 1946 155 417 452 10.1243/PIME_PROC_1946_155_058_02
  5. Frosina E. Senatore A. Rigosi M. Study of a high-pressure external gear pump with a computational fluid dynamic modeling approach Energies 2017 10 1113 10.3390/en10081113
  6. Marinaro G. Frosina E. Senatore A. A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps Energies 2021 14 471 10.3390/en14020471
  7. Egbe E.A.P. Design Analysis and Testing of a Gear Pump Int. J. Eng. Sci. 2013 3 1 7
  8. Mali P.S. Joshi G.S. Patil I.A. Performance improvement of external gear pump through CFD analysis Int. Res. J. Eng. Technol. 2018 5 430 433
  9. Yanada H. Ichikawa T. Itsuji Y. Study of the trapping of fluid in a gear pump Proc. Inst. Mech. Eng. Part A Power Process Eng. 1987 201 39 45 10.1243/PIME_PROC_1987_201_005_02
  10. Nagamura K. Ikejo K. Tutulan F.G. Design and performance of gear pumps with a non-involute tooth profile Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004 218 699 712 10.1177/095440540421800703
  11. Cieślicki R. Karpenko M. An investigation of the impact of pump deformations on circumferential gap height as a factor influencing volumetric efficiency of external gear pumps Transport 2022 37 373 382 10.3846/transport.2022.18331
  12. Szwemin P. Fiebig W. The Influence of Radial and Axial Gaps on Volumetric Efficiency of External Gear Pumps Energies 2021 14 4468 10.3390/en14154468
  13. Peng Z. Wei L. Liu R. Liang M. Qiang Y. Flow Field Modeling and Simulation of High-Speed Gear Pump Considering Optimal Radial and End Clearance IEEE Access 2023 11 64725 64737 10.1109/ACCESS.2023.3290079
  14. Corvaglia A. Rundo M. Bonati S. Rigosi M. Simulation and experimental activity for the evaluation of the filling capability in external gear pumps Fluids 2023 8 251 10.3390/fluids8090251
  15. Borghi M. Zardin B. Specchia E. External Gear Pump Volumetric Efficiency: Numerical and Experimental Analysis SAE Technical Paper SAE Warrendale, PA, USA 2009
  16. Choudhuri K. Biswas N. Mandal S.K. Mitra C. Biswas S. A numerical study of an external gear pump operating under different conditions Mater. Today Proc. 2022 in press 10.1016/j.matpr.2022.12.008
  17. Mucchi E. Dalpiaz G. Rivola A. Dynamic behavior of gear pumps: Effect of variations in operational and design parameters Meccanica 2011 46 1191 1212 10.1007/s11012-010-9376-y
  18. Del Campo D. Castilla R. Raush G.A. Gamez Montero P.J. Codina E. Numerical analysis of external gear pumps including cavitation J. Fluids Eng. Trans. ASME 2012 134 081105 10.1115/1.4007106
  19. Del Campo D. Analysis of the Suction Chamber of External Gear Pumps and Their Influence on Cavitation and Volumetric Efficiency Ph.D. Thesis Universitat Politècnica de Catalunya Barcelona, Spain 2012
  20. Ouyang T. Mo X. Lu Y. Wang J. CFD-vibration coupled model for predicting cavitation in gear transmissions Int. J. Mech. Sci. 2022 225 107377 10.1016/j.ijmecsci.2022.107377
  21. Killedar J.S. CFD Analysis of Gear Pump Master’s Thesis Youngstown State University Youngstown, OH, USA 2005
  22. Lee J.-H. Lee S.-W. Numerical Simulations of Cavitation Flow in Volumetric Gear Pump J. Korean Soc. Vis. 2011 9 28 34
  23. Muzzioli G. Montorsi L. Polito A. Lucchi A. Sassi A. Milani M. About the Influence of Eco-Friendly Fluids on the Performance of an External Gear Pump Energies 2021 14 799 10.3390/en14040799
  24. Martorana P. Bayer I.S. Steele A. Loth E. Effect of graphite and carbon nanofiber additives on the performance efficiency of a gear pump driven hydraulic circuit using ethanol Ind. Eng. Chem. Res. 2010 49 11363 11368 10.1021/ie100872g
  25. Novaković B. Radovanović L. Zuber N. Radosav D. Đorđević L. Kavalić M. Analysis of the influence of hydraulic fluid quality on external gear pump performance Eksploat. I Niezawodn. 2022 24 260 268 10.17531/ein.2022.2.7
  26. Maccioni L. Concli F. Computational fluid dynamics applied to lubricated mechanical components: Review of the approaches to simulate gears, bearings, and pumps Appl. Sci. 2020 10 8810 10.3390/app10248810
  27. Dalla Lana E. De Negri V.J. A New Evaluation Method for Hydraulic Gear Pump Efficiency Through Temperature Measurement SAE Technical Papers SAE Warrendale, PA, USA 2006
  28. Battarra M. Mucchi E. On the assessment of lumped parameter models for gear pump performance prediction Simul. Model. Pract. Theory 2020 99 102008 10.1016/j.simpat.2019.102008
  29. Yoon Y. Park B.-H. Shim J. Han Y.-O. Hong B.-J. Yun S.-H. Numerical simulation of three-dimensional external gear pump using immersed solid method Appl. Therm. Eng. 2017 118 539 550 10.1016/j.applthermaleng.2017.03.014
  30. Zeleny Z. Vodicka V. Novotny V. Mascuch J. Gear pump for low power output ORC—An efficiency analysis Energy Procedia 2017 129 1002 1009 10.1016/j.egypro.2017.09.227
  31. Abdellah El-Hadj A. Optimization of an External Gear Pump using Response Surface Method J. Mech. 2020 36 567 575 10.1017/jmech.2020.7
  32. Casoli P. Vacca A. Berta G.L. Optimization of relevant design parameters of external gear pumps Proceedings of the 7th International Symposium on Fluid Power JFPS Toyama, Japan 15–18 September 2008
  33. Zardin B. Natali E. Borghi M. Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps Energies 2019 12 2468 10.3390/en12132468
  34. Kollek W. Radziwanowska U. Energetic efficiency of gear micropumps Arch. Civ. Mech. Eng. 2015 15 109 115 10.1016/j.acme.2014.05.005
  35. McKelvey J.M. Performance of gear pumps in polymer processing Polym. Eng. Sci. 1984 24 398 402 10.1002/pen.760240603
  36. Michael P. Khalid H. Wanke T. An Investigation of External Gear Pump Efficiency and Stribeck Values SAE Technical Papers SAE Warrendale, PA, USA 2012
  37. Torrent M. Gamez-Montero P.J. Codina E. Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump Sustainability 2021 13 3089 10.3390/su13063089
  38. Wang S. Sakurai H. Kasarekar A. The optimal design in external gear pumps and motors IEEE/ASME Trans. Mechatron. 2011 16 945 952 10.1109/TMECH.2010.2058860
  39. Manring N.D. Kasaragadda S.B. The theoretical flow ripple of an external gear pump J. Dyn. Syst. Meas. Control. Trans. ASME 2003 125 396 404 10.1115/1.1592193
  40. Adake D.G. Dhote N.D. Khond M.P. Experimentation and 2D Fluid Flow Simulation over an External Gear Pump J. Phys. Conf. Ser. 2023 2601 012029 10.1088/1742-6596/2601/1/012029
  41. Mitov A. Nikolov N. Nedelchev K. Kralov I. CFD Modeling and Experimental Validation of the Flow Processes of an External Gear Pump Processes 2024 12 261 10.3390/pr12020261
  42. Castilla R. Gamez-Montero P.J. Del Campo D. Raush G. Garcia-Vilchez M. Codina E. Three-dimensional numerical simulation of an external gear pump with decompression slot and meshing contact point J. Fluids Eng. Trans. ASME 2015 137 041105 10.1115/1.4029223
  43. Rundo M. Models for Flow Rate Simulation in Gear Pumps: A Review Energies 2017 10 1261 10.3390/en10091261
  44. Nikolov N. Mitov A. Kralov I. Advanced 2D Computational Fluid Dynamics Model of an External Gear Pump Considering Relief Grooves Appl. Sci. 2024 14 4299 10.3390/app14104299
  45. ISO 4413:2010 Hydraulic Fluid Power—General Rules and Safety Requirements for Systems and Their Components International Organization for Standardization Geneva, Switzerland 2010
  46. Bashta T.M. Engineering Hydraulics: Handbook Mashinostroenie Moscow, Russia 1963
  47. Xu W. Wang Z. Zhou Z. Sun C. Zhang J. Yan R. Chen X. An advanced pressure pulsation model for external gear pump Mech. Syst. Signal Process. 2023 187 109943 10.1016/j.ymssp.2022.109943
  48. Cengel Y.A. Cimbala J.M. Fluid Mechanics: Fundamental and Applications McGraw-Hill New York, NY, USA 2013
  49. Ansys Fluent 12.0 Theory Guide Ansys Inc. Canonsburg, PA, USA 2009
  50. Linsingen I. Fundamentos de Sistemas Hidráulicos UFSC Ed. Florianópolis, Brazil 2008
  51. VDI 3279:1971-12 Characteristic Quantities of Oil-Hydraulic Devices; Hydraulic Pumps (Including Flight Hydraulics) Verein Deutscher Ingenieure (VDI) Düsseldorf, Germany 1971
  52. ISO 4391:1983 Hydraulic Fluid Power—Pumps, Motors and Integral Transmissions—Parameter Definitions and Letter Symbols International Organization for Standardization Geneva, Switzerland 1983
  53. ISO 4409:2019 Hydraulic Fluid Power—Positive-Displacement Pumps, Motors and Integral Transmissions—Methods of Testing and Presenting Basic Steady State Performance International Organization for Standardization Geneva, Switzerland 2019
  54. Hydravlika Kazanlak DSO, Kombinat “Hydravlika”. Technical Data Sheet H2-1-01, Machinoexport, Bulgaria, 1985
  55. Lakshmanan K. Tessicini F. Gil A.J. Auricchio F. A fault prognosis strategy for an external gear pump using Machine Learning algorithms and synthetic data generation methods Appl. Math. Model. 2023 123 348 372 10.1016/j.apm.2023.07.001

Issue

Applied Sciences (Switzerland), vol. 15, 2025, , https://doi.org/10.3390/app15020907

Copyright MDPI

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science