Autors: Lazarova S., Paunska T., Vasilev V., Tarnev, K. C., Iordanova S., Kolev S.
Title: Gliding Arc/Glow Discharge for CO2 Conversion: The Role of Discharge Configuration and Gas Channel Thickness
Keywords: atmospheric pressure discharges, CO2 conversion, gliding arc discharges, low-current arc discharges, magnetic stabilization, magnetically accelerated discharge, magnetically retarded discharge

Abstract: This work investigates CO2 conversion using atmospheric pressure low-current gliding discharges (GD). The following three modifications are studied: classic GD; magnetically accelerated GD (MAGD); and magnetically retarded GD (MRGD). In the latter two, permanent magnets produce a magnetic field that either accelerates or retards the discharge downstream. The gas flow is confined between quartz plates and the electrodes, with varying channel thicknesses. The magnetic configurations improve the performance compared to the classic GD, with up to 30% higher energy efficiency and up to a 50% higher conversion rate. The highest conversion rate is 11–12% with 10% energy efficiency, while the highest efficiency is 40% with 5% conversion, achieved with MRGD and MAGD at channel thicknesses of 2 mm and 3 mm.

References

  1. Friedlingstein P. O’Sullivan M. Jones M.W. Andrew R.M. Bakker D.C.E. Hauck J. Landschützer P. Le Quéré C. Luijkx I.T. Peters G.P. et al. Global Carbon Budget 2023 Earth Syst. Sci. Data 2023 15 5301 5369 10.5194/essd-15-5301-2023
  2. Fu L. Ren Z. Si W. Ma Q. Huang W. Liao K. Huang Z. Wang Y. Li J. Xu P. et al. Research progress on CO2capture and utilization technology J. CO2 Util. 2022 66 102260 10.1016/j.jcou.2022.102260
  3. Dowell N.M. Fennell P.S. Shah N. Maitland G.C. The role of CO2capture and utilization in mitigating climate change Nat. Clim. Change 2017 7 243 249 10.1038/nclimate3231
  4. Snoeckx R. Bogaerts A. Plasma Technology—A novel solution for CO2conversion? Chem. Soc. Rev. Royal 2017 46 5805 5863 10.1039/C6CS00066E 28825736
  5. Fridman A. Plasma Chemistry 1st ed. Cambridge University Press Cambridge, UK 2008
  6. Bogaerts A. CO2conversion by plasma technology: Insights from modeling the plasma chemistry and plasma reactor design Plasma Sources Sci. Technol. 2017 26 063001 10.1088/1361-6595/aa6ada
  7. Puliyalil H. Juković D. Dasiredy V. Likozar B. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels Rev. SC Adv. 2018 8 274891 10.1039/C8RA03146K 35539992
  8. Kozák T. Bogaerts A. Evaluation of the energy efficiency of CO2conversion in microwave discharges using a reaction kinetics model Plasma Sources Sci. Technol. 2015 24 015024 10.1088/0963-0252/24/1/015024
  9. Indarto A. Yang D.R. Choi J.-W. Lee H. Song H.K. Gliding arc processing of CO2conversion J. Hazard. Mater. 2007 146 309 315 10.1016/j.jhazmat.2006.12.023
  10. Tu X. Whitehead J.C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials Int. J. Hydrogen Energy 2014 39 9658 9669 10.1016/j.ijhydene.2014.04.073
  11. Li L. Zhang H. Li X. Kong X. Xu R. Tay K. Tu X. Plasma-assisted CO2conversion in a gliding arc discharge: Improving performance by optimizing the reactor design J. CO2 Util. 2020 29 296 303 10.1016/j.jcou.2018.12.019
  12. Sun S.R. Wang H.X. Mei D.H. Tu X. Bogaerts A. CO2conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling J. CO2 Util. 2017 17 220 234 10.1016/j.jcou.2016.12.009
  13. Wang W. Mei D. Tu X. Bogaerts A. Gliding arc plasma for CO2conversion: Better insights by a combined experimental and modelling approach Chem. Eng. J. 2017 330 11 25 10.1016/j.cej.2017.07.133
  14. Zhang T. Lu N. Shang K. Jiang N. Li J. Wu Y. Conversion of CO2in a gliding arc discharge reactor: Discharge characteristics and the effects of different parameters J. Phys: Conf. Series 2021 2076 012103 10.1088/1742-6596/2076/1/012103
  15. Li L. Zhang H. Li X. Huang J. Kong X. Xu R. Tu X. Magnetically enhanced gliding arc discharge for CO2activation J. CO2 Util. 2020 35 28 37 10.1016/j.jcou.2019.08.021
  16. Ouni F. Khacef A. Cormier J.M. Effect of Oxygen on Methane Steam Reforming in a Sliding Discharge Reactor Chem. Eng. Technol. 2006 29 604 609 10.1002/ceat.200500333
  17. Liu J.L. Park H.W. Chung W.J. Park D.W. High-Efficient Conversion of CO2in AC-Pulsed Tornado Gliding Arc Plasma Plasma Chem. Plasma Process. 2016 36 437 449 10.1007/s11090-015-9649-2
  18. Nunnally T. Gutsol K. Rabinovich A. Fridman A. Gutsol A. Kemoun A. Dissociation of CO2in a low current gliding arc plasmatron J. Phys. D Appl. Phys. 2011 44 274009 10.1088/0022-3727/44/27/274009
  19. Kim S.C. Lim M.S. Chun Y.N. Reduction Characteristics of Carbon Dioxide Using a Plasmatron Plasma Chem. Plasma Process. 2014 34 125 143 10.1007/s11090-013-9499-8
  20. Ramakers M. Trenchev G. Heijkers S. Wang W. Bogaerts A. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion ChemSusChem. 2017 10 2642 2652 10.1002/cssc.201700589
  21. Ivanov V. Paunska T.S. Lazarova S. Bogaerts A. Kolev S. Gliding/glow arc discharge: Compering the performance of different discharge configurations J. CO2 Util. 2023 67 102300 10.1016/j.jcou.2022.102300
  22. Ivanov V. Lazarova S. Iordanova S. Paunska T.s. Georgiev N. Kolev S. Conversion of CO2in stabilized low-current arc discharge at atmospheric pressure J. Phys Conf. Series 2022 2240 012029 10.1088/1742-6596/2240/1/012029
  23. Ivanov V. Paunska T. Tarnev K. Kolev S. Magnetic field stabilization of low current DC arc discharge in cross flow in argon gas at atmospheric pressure—A numerical modelling study Plasma Sources Sci. Technol. 2021 30 0850070 10.1088/1361-6595/ac14a8
  24. Li Z. Wu E. Nie L. Liu D. Lu X. Magnetic field stabilized atmospheric pressure plasma nitrogen fixation: Effect of electric field and gas temperature Phys. Plasmas 2023 30 083502 10.1063/5.0155713
  25. Mercer E.R. Van Alphen S. Van Deursen C. Righart T.W. Bongers W.A. Snyders R. Bogaerts A. van de Sanden M.C.M. Peeters F.J.J. Post-plasma quenching to improve conversion and energy efficiency in a CO2microwave plasma Fuel 2023 334 126734 10.1016/j.fuel.2022.126734
  26. Hecimovic A. Kiefer C.K. Meindl A. Antunes R. Fantz U. Fast gas quenching of microwave plasma effluent for enhanced. CO2conversion J. CO2 Util. 2023 71 102473 10.1016/j.jcou.2023.102473
  27. Korolev Y.D. Frants O.B. Landl N.V. Geyman V.G. Suslov A.I. Parameters of a positive column in a gliding glow discharge in air Phys. Plasmas 2017 24 103526 10.1063/1.5003141
  28. Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications AIAA J. 1994 32 8 10.2514/3.12149
  29. Menter F.R. Kuntz M. Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model Turbul. Heat Mass Transf. 2003 4 625 632
  30. COMSOL Multiphysics 6.2 COMSOL Multiphysics 6.2 CFD Module User’s Guide 248 Available online: https://doc.comsol.com/6.2/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf (accessed on 28 October 2024)

Issue

Plasma, vol. 7, pp. 877-890, 2024, , https://doi.org/10.3390/plasma7040048

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus