Autors: Pandiev, I. M., Antchev H., Kurtev, N. A., Tomchev, N. N., Aleksandrova, M. P.
Title: Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices
Keywords: buck synchronous converters, energy harvesting, medical applications, piezoelectric energy harvester, rectifiers, signal processing, testing, vibrations

Abstract: Improving microelectronic technologies has created various micro-power electronic devices with different practical applications, including wearable electronic modules and systems. Furthermore, the power sources for wearable electronic devices most often work with electrical energy obtained from the environment without using standard batteries. This paper presents the structure and electrical parameters of a circuit configuration realized as a prototype of a low-power AC-DC conversion circuit intended for use as a power supply device for signal processing systems that test various biomedical parameters of the human body. The proposed prototype has to work as a wearable self-powered system that transfers electrical energy obtained through mechanical vibrations in the piezoelectric generator. The obtained electrical energy is used to charge a single low-voltage supercapacitor, which is used as an energy storage element. The proposed circuit configuration is realized with discrete components consisting of a low-voltage bridge rectifier, a low-pass filter, a DC-DC step-down (buck) synchronous converter, a power-controlling system with an error amplifier, and a window detector that produces a “power-good” signal. The power-controlling system allows tuning the output voltage level to around 1.8 V, and the power dissipation for it is less than 0.03 mW. The coefficient of energy efficiency achieved up to 78% for output power levels up to 3.6 mW. Experimental testing was conducted to verify the proposed AC-DC conversion circuit’s effectiveness, as the results confirmed the preliminary theoretical analyses and the derived analytical expressions for the primary electrical parameters.

References

  1. Todaro M.T. Guido F. Algieri L. Mastronardi V.M. Desmaële D. Epifani G. Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films IEEE Trans. Nanotechnol. 2018 17 220 230 10.1109/TNANO.2017.2789300
  2. Shuvo M.M.H. Titirsha T. Amin N. Islam S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare Energies 2022 15 7495 10.3390/en15207495
  3. Fu H. Jiang J. Hu S. Rao J. Theodossiades S. A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing Mech. Syst. Signal Process. 2023 189 110034 10.1016/j.ymssp.2022.110034
  4. Mukhopadhyay S.C. Wearable Sensors for Human Activity Monitoring: A Review IEEE Sens. J. 2015 15 1321 1330 10.1109/JSEN.2014.2370945
  5. Seneviratne S. Hu Y. Nguyen T. Lan G. Khalifa S. Thilakarathna K. A Survey of Wearable Devices and Challenges IEEE Commun. Surv. Tutor. 2017 19 2573 2620 10.1109/COMST.2017.2731979
  6. Chong Y.-W. Ismail W. Ko K. Lee C.-Y. Energy Harvesting for Wearable Devices: A Review IEEE Sens. J. 2019 19 9047 9062 10.1109/JSEN.2019.2925638
  7. Khalifa S. Lan G. Hassan M. Seneviratne A. Das S.K. HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices IEEE Trans. Mob. Comput. 2018 17 1353 1368 10.1109/TMC.2017.2761744
  8. Wang L. Zhao L. Luo G. Zhao Y. Yang P. Jiang Z. Maeda R. System level design of wireless sensor node powered by piezoelectric vibration energy harvesting Sens. Actuators A Phys. 2020 310 112039 10.1016/j.sna.2020.112039
  9. Stefanov N. Special rectifiers Power Supply Devices Tehnika Sofia, Bulgaria 2002 Chapter 2 43 68 9789540305646
  10. Stefanov N. Power rectifiers Power Supply Devices Tehnika Sofia, Bulgaria 2002 Chapter 4 84 96 9789540305646
  11. Seifart M. Stromversorgung Analoge Schaltungen 6th ed. Technik Berlin, Germany 2003 Chapter 22 591 639 978-3341012987
  12. Marasco K. How to Apply DC-to-DC Step-Up/Step-Down Regulators Successfully Analog Devices Norwood, MA, USA 2024 Available online: https://www.analog.com/media/en/analog-dialogue/volume-45/number-4/articles/dc-to-dc-step-up-step-down-regulators.pdf (accessed on 6 June 2024)
  13. Tabesh A. Frechette L.G. A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy from a Piezoelectric Micropower Gene rator IEEE Trans. Ind. Electron. 2010 57 840 849 10.1109/TIE.2009.2037648
  14. Romani A. Filippi M. Tartagni M. Micropower Design of a Fully Autonomous Energy Harvesting Circuit for Arrays of Piezoelectric Transducers IEEE Trans. Power Electron. 2014 29 729 739 10.1109/TPEL.2013.2257856
  15. Du S. Jia Y. Zhao C. Amaratunga G.A.J. Seshia A.A. A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting IEEE J. Solid-State Circuits 2019 54 1733 1743 10.1109/JSSC.2019.2893525
  16. Chamanian S. Muhtaroğlu A. Külah H. A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters IEEE Trans. Power Electron. 2020 35 901 912 10.1109/TPEL.2019.2910410
  17. Fang S. Xia H. Xia Y. Ye Y. Shi G. Wang X. An Efficient Piezoelectric Energy Harvesting Circuit with Series-SSHI Rectifier and FNOV-MPPT Control Technique IEEE Trans. Ind. Electron. 2021 68 7146 7155 10.1109/TIE.2020.3007054
  18. Çiftci B. Chamanian S. Koyuncuoğlu A. Muhtaroğlu A. Külah H. A Low-Profile Autonomous Interface Circuit for Piezoelectric Micro-Power Generators IEEE Trans. Circuits Syst. I Regul. Pap. 2021 68 1458 1471 10.1109/TCSI.2021.3053503
  19. Edla M. Lim Y.Y. Mikio D. Padilla R.V. Non-Linear Switching Circuit for Active Voltage Rectification and Ripples Reduction of Piezoelectric Energy Harvesters Energies 2022 15 709 10.3390/en15030709
  20. Haseeb A. Edla M. Ucgul M. Santoso F. Deguchi M. A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems Energies 2023 16 1631 10.3390/en16041631
  21. Kamran M. Edla M. Thabet A.M. Haseeb A. Mikio D. Bui V. A Self-Powered FBRJT AC-DC Conversion Circuit for Piezoelectric Energy Harvesting Systems Energies 2023 16 1734 10.3390/en16041734
  22. Costanzo L. Lo Schiavo A. Vitelli M. A Self-Supplied Power Optimizer for Piezoelectric Energy Harvesters Operating under Non-Sinusoidal Vibrations Energies 2023 16 4368 10.3390/en16114368
  23. LTC3588-1 Nanopower Energy Harvesting Power Supply—Datasheet Analog Devices Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/ltc3588-1.html (accessed on 7 June 2024)
  24. LTC3255 Wide VIN Range Fault Protected 50mA Step-Down Charge Pump—Datasheet Analog Devices Norwood, MA, USA 2023 Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/3255f.pdf (accessed on 7 June 2024)
  25. TPSM365R6 3-V to 65-V Input, 1-V to 13-V Output, 0.6-A Synchronous Buck Converter Power Module—Datasheet Texas Instruments Dallas, TX, USA 2023 Available online: https://www.ti.com/lit/gpn/tpsm365r6 (accessed on 7 June 2024)
  26. ADP5304 Ultralow Power Step-Down Regulator with Input Voltage Monitor and Regulation—Datasheet Analog Devices Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/adp5304.html (accessed on 10 October 2024)
  27. Hong J. Chen F. He M. Wang S. Chen W. Guan M. Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology Energies 2019 12 3166 10.3390/en12163166
  28. Pandiev I. Antchev H. Aleksandrova M. A Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-free Power Supply Proceedings of the 2024 31st International Conference on Mixed Design of Integrated Circuits and System (MIXDES) Gdańsk, Poland 27–38 June 2024 148 153 10.23919/MIXDES62605.2024.10613982
  29. Research Group “Biomedical Engineering” The European Union NextGenerationEU, Through the National Recovery and Resilience Plan of the Republic of Bulgaria, Project № BG-RRP-2.004-0005 “Improving Research Capacity and Quality for International Recognition and Sustainability of the TU-Sofia”, Sofia, Bulgaria, 2023 Available online: https://tu-sofia.bg/rTeam/_teamDetails/15 (accessed on 20 August 2024)
  30. Wang Z. Wang W. Tang L. Tian R. Wang C. Zhang Q. Liu C. Gu F. Ball A.D. A piezoelectric energy harvester for freight train condition monitoring system with the hybrid nonlinear mechanism Mech. Syst. Signal Process. 2022 180 109403 10.1016/j.ymssp.2022.109403
  31. Ottman G.K. Hofmann H.F. Bhatt A.C. Lesieutre G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply IEEE Trans. Power Electron. 2002 17 669 676 10.1109/TPEL.2002.802194
  32. Tietze V. Schenk C. Power Supplies Electronic Circuits 2nd ed. Springer New York, NY, USA 2008 Chapter 16 885 928 10.1007/978-3-540-78655-9
  33. ROHM Semiconductor Inductor Calculation for Buck Converter IC Application Note: 12027ECY01 Rohm Semiconductor San Diego, CA, USA 2012 1 5
  34. Rahimi A.M. Parto P. Asadi P. Compensator Design Procedure for Buck Converter with Voltage-Mode Error-Amplifier Application Note: AN-1162 Infineon Technologies AG Neubiberg, Germany 2012 1 36
  35. MAX9015–MAX9020: Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference–Datasheet Analog Devices Wilmington, MA, USA 2019
  36. Peng Y. Choo K.D. Oh S. Lee I. Jang T. Kim Y. Lim J. Blaauw D. Sylvester D. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Sense-and-Set Rectifier IEEE J. Solid-State Circuits 2019 54 3348 3361 10.1109/JSSC.2019.2945262
  37. Li S. Roy A. Calhoun B.H. A Piezoelectric Energy-Harvesting System with Parallel-SSHI Rectifier and Integrated MPPT Achieving 417% Energy-Extraction Improvement and 97% Tracking Efficiency Proceedings of the 2019 Symposium on VLSI Circuits Kyoto, Japan 9–14 June 2019 10.23919/VLSIC.2019.8778144
  38. Chew Z.J. Ruan T. Zhu M. Strain Energy Harvesting Powered Wireless Sensor System Using Adaptive and Energy-Aware Interface for Enhanced Performance IEEE Trans. Ind. Inform. 2017 13 3006 3016 10.1109/TII.2017.2710313
  39. Chew Z.J. Zhu M. Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting IEEE Trans. Ind. Electron. 2020 67 3267 3276 10.1109/TIE.2019.2908610
  40. Chamanian S. Çiftci B. Muhtaroğlu A. Külah H. A Self-Powered and Area Efficient SSHI Rectifier for Piezoelectric Harvesters IEEE Access 2021 9 117703 117713 10.1109/ACCESS.2021.3107365
  41. Huet F. Boitier V. Seguier L. Tunable Piezoelectric Vibration Energy Harvester with Supercapacitors for WSN in an Industrial Environment IEEE Sens. J. 2022 22 15373 15384 10.1109/JSEN.2022.3185426
  42. Ben Ammar M. Sahnoun S. Fakhfakh A. Viehweger C. Kanoun O. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting Sensors 2023 23 1830 10.3390/s23041830
  43. PPA PRODUCTS Datasheet & User Manual. Midé Technology, Midé 200 Boston Avenue, Suite 1000, Medford, MA, USA, 2020 Available online: https://cdn2.hubspot.net/hubfs/3841176/Data-Sheets/ppa-piezo-product-datasheet.pdf (accessed on 27 May 2024)

Issue

Electronics (Switzerland), vol. 14, pp. 46, 2025, , https://doi.org/10.3390/electronics14010046

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science