Autors: Mladenov, V. M., Kirilov, S. M.
Title: A Simple Memristor Model for Memory Crossbars
Keywords: GNU Octave modeling, LTSPICE memristor model, memristor modeling, numerical methods

Abstract: Memristors are favorable circuit components with very good commutating and memory properties. They are with small power usage, nano-sizes, and good compatibility to CMOS high-density integrated circuits. Memristors are relevant for creating neural nets, memory arrays, and various electric schemes. The design, analysis and simulations of memristor elements and electronic schemes, based on memristors by software simulators are significant tasks. This paper offers analysis of memristor arrays in GNU Octave and LTSPICE by some numerical methods. The considered modified memristor model is an appropriate one, because it is with a high-rate operation, very good switching features and includes activation threshold, which permits reading and writing processes. A comparison with several other regularly used standard and modified memristor models and analysis of their behavior are conducted. Analyses are made in LTSPICE and Octave, and comparison of obtained results approves model's accurate operation. The suggested work could be suitable for both educational and scientific utilizations.

References

  1. Sawa, A. “Resistive switching in transition metal oxides,” Materials toda,y 2008 (Amsterdam) vol. 11, issue (6), pp. 28-36, doi: 10.1016/S1369-7021(08)70119-6.
  2. Strukov, D., Williams, R. “Exponential ionic drift: fast switching and low volatility of thin-film memristors,” Applied Physics A, 2009 (Berlin) vol. 94, issue (3), pp. 515-519, doi: 10.1007/s00339-008-4975-3.
  3. Ascoli, A., Tetzlaff, R., Biolek, Z., Kolka, Z., Biolkova, V., Biolek, D. “The Art of Finding Accurate Memristor Model Solutions,” IEEE Journal Emerg. Sel. Top. Circuits and Systems (Piscataway), 2015, vol. 5, pp. 133–142, doi: 10.1109/JETCAS.2015.2426493.
  4. Biolek, D., Kolka, Z., Biolkova, V., Biolek, Z. “Memristor models for SPICE simulation of extremely large memristive networks,” IEEE Symposium ISCAS (Montreal), 2016, pp. 389-392, doi: 10.1109/ISCAS.2016.7527252.
  5. Dautovic, S., Samardzic, N., Juhas, A., Ascoli, A., Tetzlaff, R. “Simscape and LTspice models of HP ideal generic memristor based on finite closed form solution for window functions,” 28th IEEE International Conference ICECS (Dubai) pp. 1-6, 2021, doi: 10.1109/ICECS53924.2021.9665488.
  6. Parit, A., Yadav, M., Gupta, A., Mikhaylov, A., Rawat, B., “Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory,” Chaos, Solitons & Fractals (Amsterdam), 2021, vol. 145, pp. 1-8, doi: 10.1016/j.chaos.2021.110818.
  7. Yang, Y., Lee, S., “Circuit Systems with MATLAB and PSpice,” John Wiley & Sons (Hoboken), 2008, 532, ISBN 978-04-7082-240-1.
  8. Kharab, A., Guenther, R. „An introduction to numerical methods: a MATLAB® approach,“CRC press (Boca Raton), pp. 631 ISBN 9781315107042 doi: 10.1201/9781315107042.
  9. Solovyeva, E., Azarov, V., “Comparative Analysis of Memristor Models with a Window Function Described in LTspice,” IEEE ElConRus (Moscow), 2021, pp. 1097-1101, doi: 10.1109/ElConRus51938.2021.9396217.
  10. Mladenov, V. “A Unified and Open LTSPICE Memristor Model Library,” MDPI Electronics (Basel), 2021, vol. 10, issue (13), pp. 1-27, doi: 10.3390/electronics10131594.
  11. Mohindru, P., Mohindru, P., “Electronic Circuit Analysis Using LTSpice XVII Simulator: A Practical Guide for Beginners,” CRC Press (Boca Raton), 2021, pp. 236, doi: 10.1201/9781003199489 ISBN 9781003199489.
  12. Alva, J., “Beginning Mathematica and Wolfram for Data Science,” Apress (Mexico), pp. 1-430, 2021, ISBN-13 (electronic): 978-1-4842-6594-9.
  13. Nagar, S., “Introduction to Octave,” Apress (Berkeley), 2018, pp. 209, doi: 10.1007/978-1-4842-3201-9_1 ISBN 978-1-4842-3201-9.
  14. Velchev, Y., Dimitrov, K., Laskov, L., “Teaching Signals and Systems via General Public License software during COVID-19 lockdown,” XI National Conference with International Participation (ELECTRONICA), 2020, pp. 1-4, doi: 10.1109/ELECTRONICA50406.2020.9305125.
  15. Lehtonen, E., Laiho, M., “CNN using memristors for neighborhood connections,” Proc. IEEE CNNA Conf., 2010 pp. 1–4, doi: 10.1109/CNNA.2010.5430304.
  16. Joglekar, Y., Wolf, S., “The elusive memristor: properties of basic electrical circuits,” European Journal of physics (Bristol), 2009, vol. 30, issue (4), pp. 661-675, doi: 10.1088/0143-0807/30/4/001.
  17. Rziga, F., Mbarek, K., Ghedira, S., Besbes, K., “A general overview of memristor devices,” International Conference on Engineering & MIS (Monastir Tunisia), 2017, pp. 1-6, doi: 10.1109/ICEMIS.2017.8273019.
  18. Kirilov, S., Mladenov, V., “A Simple LTSPICE Memristor Neuron with a Modified Transfer Function,” in IEEE International Conf. MOCAST 2024 (Sofia), pp. 1 – 4, DOI: 10.1109/MOCAST61810.2024.10615915.
  19. Li, H., Wang, S., Zhang, X., Wang, W., Yang, R., Sun, Z., Feng, W., Lin, P., Wang, Z., Sun, L., Yao, Y., 2021 “Memristive crossbar arrays for storage and computing applications,” Advanced Intelligent Systems (Weinheim), vol. 3, issue (9), pp. 1-26, doi: 10.1002/aisy.202100017.
  20. Campbell, K., “Self-directed channel memristor for high temperature operation,” Microelectronics journal (Amsterdam), 2017, vol. 59, pp. 10-14 doi: 10.1016/j.mejo.2016.11.006.
  21. Kirilov, S. “Octave Memristor Models’ Library and Application for Analysis of Memristors and Memristor-Based Circuits,” submitted for presentation and publishing in International Conf. ICARAI 2024 (Sozopol Bulgaria) https://e-university.tu-sofia.bg/e-conf/index.php?konf=214.
  22. Alvbrant, J., Keshmiri, V., Wikner, J., “Transfer characteristics and bandwidth limitation in a linear-drift memristor model,” European Conference on Circuit Theory and Design (Trondheim), 2015, pp. 1-4, doi: 10.1109/ECCTD.2015.7300037.
  23. Chapra, S., Canale, R., “Numerical Methods for Engineers,” McGraw-Hill Education (New York), 2016, pp. 970, ISBN 978–0–07–339792–4.

Issue

2024 12th International Scientific Conference on Computer Science, COMSCI 2024 - Proceedings, pp. 1-6, 2024, , https://doi.org/10.1109/COMSCI63166.2024.10778508

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus