Autors: Popova M., Boycheva, S. V., Dimitrov I., Dimitrov M., Kovacheva D., Karashanova D., Velinov N., Atanasova G., Szegedi A. Title: The Formation of γ-Valerolactone from Renewable Levulinic Acid over Ni-Cu Fly Ash Zeolite Catalysts Keywords: levulinic acid, lignocellulosic biomass, valorization of coal fly ash, zeolites, γ-valerolactoneAbstract: Zeolites with different structures (P1, sodalite, and X) were synthesized from coal fly ash by applying ultrasonically assisted hydrothermal and fusion–hydrothermal synthesis. Bimetallic catalysts, containing 5 wt.% Ni and 2.5 wt.% Cu, supported on the zeolites, were prepared by a post-synthesis incipient wetness impregnation method. The catalysts were characterized by X-ray powder diffraction (XRPD), N2 physisorption, transmission electron microscopy (TEM), Mössbauer and X-ray photoelectron spectroscopies (XPS), and H2–temperature-programmed reduction (H2-TPR) analyses. The XRPD results showed that crystalline Cu0 and NixCuy intermetallic nanoparticles were formed in the reduced catalysts. The presence of the intermetallic phase affected the reducibility of the nickel by shifting it to a lower temperature, as confirmed by the H2-TPR curves. Based on the Mössbauer spectroscopic results, it was established that the iron contamination of the coal fly ash zeolites (CFAZs) was distributed in ionic positions of the zeolite lattice and as a finely dispersed iron oxide phase on the external surface of the supports. The formation of the NiFe alloy, not detectable by XRPD, was also evidenced on the impregnated samples. The catalysts were studied in the upgrading of levulinic acid (LA), derived from lignocellulosic biomass, to γ-valerolactone (GVL), in a batch reactor under 30 bar H2 pressure at 150 and 200 °C, applying water as a solvent. The NiCu/SOD and NiCu/X catalysts showed total LA conversion and a high GVL yield (>75%) at a reaction temperature of 200 °C. It was found that the textural parameters of the catalysts have less influence on the catalytic activity, but rather the stable dispersion of metals during the reaction. The characterization of the spent catalyst found the rearrangement of the support structure. The high LA conversion and GVL yield can be attributed to the weak acidic character of the support and the moderate hydrogenation activity of the Ni-Cu sites with high dispersion. References - Climent M.J. Corma A. Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels Green Chem. 2014 16 516 547 10.1039/c3gc41492b
- Mika L.T. Cséfalvay E. Németh Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability Chem. Rev. 2018 118 505 613 10.1021/acs.chemrev.7b00395 29155579
- Li H. Fang Z. Smith R.L. Jr. Yang S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials Prog. Energy Combust. Sci. 2016 55 98 194 10.1016/j.pecs.2016.04.004
- Williams A. Jones J.M. Ma L. Pourkashanian M. Pollutants from the combustion of solid biomass fuels Prog. Energy Combust. Sci. 2012 38 113 137 10.1016/j.pecs.2011.10.001
- Grande L. Pedroarena I. Korili S.A. Gil A. Hydrothermal Liquefaction of Biomass as One of the Most Promising Alternatives for the Synthesis of Advanced Liquid Biofuels: A Review Materials 2021 14 5286 10.3390/ma14185286 34576508
- Silva T.A.L. Varão L.H.R. Pasquini D. Lignocellulosic Biomass Handbook of Biomass Thomas S. Hosur M. Pasquini D. Jose Chirayil C. Springer Singapore 2024 1 39 10.1007/978-981-19-6772-6_5-1
- Horváth I.T. Mehdi H. Fábos V. Boda L. Mika L.T. γ-Valerolactone—A sustainable liquid for energy and carbon-based chemicals Green Chem. 2008 10 238 242 10.1039/B712863K
- Dutta S. Yu I.K.M. Tsang D.C.W. Ng H.Y. Ok Y.S. Sherwood J. Clark J.H. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review Chem. Eng. J. 2019 372 992 1006 10.1016/j.cej.2019.04.199
- Galletti A.M.R. Antonetti C. De Luise V. Martinelli M. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid Green Chem. 2012 14 688 694 10.1039/c2gc15872h
- Long X. Sun P. Li Z. Lang R. Xia C. Li F. Magnetic Co/Al2O3catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone Chin. J. Catal. 2015 36 1512 1518 10.1016/S1872-2067(15)60934-2
- Wright W.R.H. Palkovits R. Development of heterogeneous atalysts for the conversion of levulinic acid to γ-valerolactone ChemSusChem 2012 5 1657 1667 10.1002/cssc.201200111
- López-Fonseca R. Jiménez-González C. de Rivas B. Gutiérrez-Ortiz J.I. Partial oxidation of methane to syngas on bulk NiAl2O4catalyst. Comparison with alumina supported nickel, platinum, and rhodium catalysts Appl. Catal. A 2012 437 53 62 10.1016/j.apcata.2012.06.014
- Popova M. Djinović P. Ristić A. Lazarova H. Dražić G. Pintar A. Balu A.M. Tušar N.N. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over bi-functional Ni/HZSM-5 Catalyst Front. Chem. 2018 6 285 10.3389/fchem.2018.00285 30065923
- Robertson S.D. McNicol B.D. De Baas J.H. Kloet S.C. Jenkins J.W. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction J. Catal. 1975 37 424 431 10.1016/0021-9517(75)90179-7
- Miceli M. Frontera P. Macario A. Malara A. Recovery/reuse of heterogeneous supported spent catalysts Catalysts 2021 11 591 10.3390/catal11050591
- Yang W. Vogler B. Lei Y. Wu T. Metallic ion leaching from heterogeneous catalysts: An overlooked effect in the study of catalytic ozonation processes Environ. Sci. Water Res. Technol. 2017 3 1143 1151 10.1039/C7EW00273D
- Mironenko R.M. Eremin D.B. Ananikov V.P. The phenomenon of “dead” metal in heterogeneous catalysis: Opportunities for increasing the efficiency of carbon-supported metal catalysts Chem. Sci. 2023 14 14062 14073 10.1039/D3SC04691E
- Hengst K. Schubert M. Carvalho H.W.P. Lu C. Kleist W. Grunwaldt J.-D. Synthesis of γ-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts Appl. Catal. A 2015 502 18 26 10.1016/j.apcata.2015.05.007
- Obregón I. Gandarias I. Al-Shaal M.G. Mevissen C. Arias P.L. Palkovits R. The Role of the hydrogen source on the selective production of γ-valerolactone and 2-methyltetrahydrofuran from levulinic acid ChemSusChem 2016 9 2488 2495 10.1002/cssc.201600751
- Varimalla S. Manda K. Boggala S. Nappuni R.C. Inkollu S. Aytam H.P. Akula V. Effect of method of preparation of Ni and/or Cu supported on ZSM-5 catalysts for the aqueous phase hydrogenation of levulinic acid to γ-valerolactone Catal. Today 2024 441 114916 10.1016/j.cattod.2024.114916
- Kuwahara Y. Kaburagi W. Osada Y. Fujitani T. Yamashita H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2catalyst supported on SBA-15 silica Catal. Today 2017 281 418 428 10.1016/j.cattod.2016.05.016
- Liu Z. Liu H. Gao Y. Hing Y. Carrier synergistic effect of iron based catalysts for CO hydrogenation to lower olefins Reac. Kinet. Mech. Cat. 2024 137 879 896 10.1007/s11144-023-02555-0
- Zhang M. Guan Z. Qiao Y. Zhou S. Chen G. Guo R. Pan W. Wu J. Li F. Ren J. The impact of catalyst structure and morphology on the catalytic performance in NH3-SCR reaction: A review Fuel 2024 361 130541 10.1016/j.fuel.2023.130541
- Li Y. Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly Nat. Rev. Mater 2021 6 1156 1174 10.1038/s41578-021-00347-3
- Zhang H. bin Samsudin I. Jaenicke S. Chuah G.-K. Zeolites in catalysis: Sustainable synthesis and its impact on properties and applications Catal. Sci. Technol. 2022 12 6024 6039 10.1039/D2CY01325H
- Querol X. Moreno N. Umaña J.C. Alastuey A. Hernández E. López-Soler A. Plana F. Synthesis of zeolites from coal fly ash: An overview Int. J. Coal Geol. 2002 50 413 423 10.1016/S0166-5162(02)00124-6
- Zhang W. Zhang T. Lv Y. Jing T. Gao X. Gu Z. Li S. Ao H. Fang D. Recent progress on the synthesis and applications of zeolites from industrial solid wastes Catalysts 2024 14 734 10.3390/catal14100734
- Murayama N. Yamamoto H. Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydro-thermal reaction Int. J. Miner. Proc. 2002 64 1 17 10.1016/S0301-7516(01)00046-1
- Guo R. Song Z. Chen X. Liu W. Zhang M. Fan Y. Gao H. Li H. Zhang X. Effect of Fe3+or Fe2+species on the catalytic performance and reaction pathway over CWK modified by iron sources in NH3-SCR reaction Res. Chem. Intermed. 2024 50 5679 5697 10.1007/s11164-024-05425-z
- Boycheva S. Zgureva D. Vassilev V. Kinetic and thermodynamic studies on the thermal behaviour of fly ash from lignite coals Fuel 2013 108 639 646 10.1016/j.fuel.2013.02.042
- Kotova O.B. Shabalin I.N. Shushkov D.A. Kocheva L.S. Hydrothermal synthesis of zeolites from coal fly ash Adv. Appl. Ceram. 2015 115 152 157 10.1179/1743676115Y.0000000063
- Längauer D. Čablík V. Hredzák S. Zubrik A. Matik M. Danková Z. Preparation of synthetic zeolites from coal fly ash by hydrothermal synthesis Materials 2021 14 1267 10.3390/ma14051267 33800022
- Koshlak H. Synthesis of zeolites from coal fly ash using alkaline fusion and its applications in removing heavy metals Materials 2023 16 4837 10.3390/ma16134837 37445151
- Marhoon A.A. Hasbullah S.A. Asikin-Mijan N. Mokhtar W.N.A.W. Hydrothermal synthesis of high-purity zeolite X from coal fly ash for heavy metal removal: Kinetic and isotherm analysis Adv. Powder Technol. 2023 34 104242 10.1016/j.apt.2023.104242
- Boycheva S. Zgureva D. Shoumkova A. Recycling of lignite coal fly ash by its conversion into zeolites Coal Combust. Gasif. Prod. 2015 7 1 8 10.4177/CCGP-D-14-00008.1
- Boycheva S. Marinov I. Miteva S. Zgureva D. Conversion of coal fly ash into nanozeolite Na-X by applying ultrasound assisted hydrothermal and fusion-hydrothermal alkaline activation Sustain. Chem. Pharm. 2020 15 100217 10.1016/j.scp.2020.100217
- Huo Z. Xu X. Lv Z. Song J. He M. Li Z. Wang Q. Yan L. Li Y. Thermal study of NaP zeolite with different morphologies J. Therm. Anal. Calorim. 2013 111 365 369 10.1007/s10973-012-2301-y
- Novembre D. Gimeno D. Vecchio A. Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock Nat. Sci. Rep. 2021 11 4872 10.1038/s41598-021-84383-7
- Smirnov A.A. Khromova S.A. Bulavchenko O.A. Kaichev V.V. Saraev A.A. Reshetnikov S.I. Bykova M.V. Trusov L.I. Yakovlev V.A. Effect of the Ni/Cu ratio on the composition and catalytic properties of nickel-copper alloy in anisole hydrodeoxygenation Kinet. Catal. 2014 55 69 78 10.1134/S0023158414010145
- Popova M. Ristic A. Lazar K. Maucec D. Vassileva M. Novak Tusar N. Iron-functionalized silica nanoparticles as a highly efficient adsorbent and catalyst for toluene oxidation in the gas phase Chem. Cat. Chem. 2013 5 986 993 10.1002/cctc.201200562
- Pinheiro A.N. Valentini A. Sasaki J.M. Oliveira A.C. Highly stable dealuminated zeolite support for the production of hydrogen by dry reforming of methane Appl. Catal. A Gen. 2009 355 156 168 10.1016/j.apcata.2008.12.007
- Kostadinova E. Velinov N. Avdjieva T. Mitov I. Rusanov V. A study of the pressure vessel steel of the WWER-440 unit 1 of the Kozloduy nuclear power plant Hyperfine Interact. 2017 238 94 10.1007/s10751-017-1467-x
- Biesinger M.C. Payne B.P. Grosvenor A.P. Lau L.W.M. Gerson A.R. Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni Appl. Surf. Sci. 2011 257 2717 2730 10.1016/j.apsusc.2010.10.051
- Biesinger M.C. Advanced analysis of copper X-ray photoelectron spectra Surf. Interface Anal. 2017 49 1325 1334 10.1002/sia.6239
- Popova M. Dimitrov M. Boycheva S. Dimitrov I. Ublekov F. Koseva N. Atanasova G. Karashanova D. Szegedi Á. Ni-Cu and Ni-Co-modified fly ash zeolite catalysts for hydrodeoxygenation of levulinic Acid to γ-valerolactone Molecules 2024 29 99 10.3390/molecules29010099 38202681
- Abdelrahman O.A. Heyden A. Bond J.Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C ACS Catal. 2014 4 1171 1181 10.1021/cs401177p
- Gupta S.S.R. Kantam M.L. Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst Catal. Today 2018 309 189 194 10.1016/j.cattod.2017.08.007
- Yang Y. Sun Y. Luo X. The Relationship between structure and catalytic activity-stability of non-precious metal-based catalysts towards levulinic acid hydrogenation to γ-valerolactone Energies 2022 15 8093 10.3390/en15218093
- Boycheva S. Szegedi Á. Lázár K. Popov C. Popova M. Advanced high-iron coal fly ash zeolites for low-carbon emission catalytic combustion of VOCs Catal. Today 2023 418 114109 10.1016/j.cattod.2023.114109
- Hengst K. Ligthart D.A.J.M. Doronkin D.E. Walter K.M. Kleist W. Hensen E.J.M. Grunwaldt J.-D. Continuous synthesis of γ-valerolactone in a trickle-bed reactor over supported nickel catalysts Ind. Eng. Chem. Res. 2017 56 2680 2689 10.1021/acs.iecr.6b03493
- Boycheva S. Zgureva D. Lazarova H. Popova M. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na–Ca-X Chemosphere 2021 271 129505 10.1016/j.chemosphere.2020.129505
- ASTM C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (AASHTO M 295) ASTM West Conshohocken, PA, USA 2023
- CAN/CSA A3001-03 Cementitious Materials Compendium CSA Group Toronto, ON, Canada 2003
Issue
| Molecules, vol. 29, pp. 5753, 2024, , https://doi.org/10.3390/molecules29235753 |
Copyright MDPI |