Autors: Kamberov, K. H., Todorov, G. D., Zlatev, B. N.
Title: Virtual Prototyping-Based Development of Stepper Motor Design
Keywords: electric drive, permanent magnet, physical prototyping, stepper motor, virtual prototyping

Abstract: This study presents a methodology used in the design development of stepper motors. The methodology unites virtual and physical techniques to assess the structure under development at its various design stages. Virtual prototyping is used twice, at the concept and early design stages. Concept check aims to give more general directions for further design development. In contrast, the simulations at the detailed design stage allow for assessing various design parameters at a high level of confidence. The testing of a physical prototype is used to validate simulation results. It is also used to check the design just before it is finished. The presented methodology is demonstrated in an industrial use case for stepper motor development for hydraulic valve application. The main contribution of this study is related to the way the combination of virtual and physical prototyping and testing at different product development stages applies to the development of stepper motors and other similar products.

References

  1. Szabat K. Pajchrowski T. Tarczewski T. Modern Electrical Drives: Trends, Problems, and Challenges Energies 2022 15 160 10.3390/en15010160
  2. Ionica I. Modreanu M. Morega A. Boboc C. Design and modeling of a hybrid stepper motor Proceedings of the 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE) Bucharest, Romania 23–25 March 2017
  3. Condit R. Jones D.W. Stepper Motors Fundamentals Microchip Technology Inc. Chandler, AZ, USA 2004
  4. Tomy N. Francis J. Modeling and Simulation of a Hybrid Stepper Motor in Microstepping Mode Int. J. Adv. Eng. 2015 9 31 35
  5. Alhinqari A. Alhengar A. Simulation of Stepper Motor Motion and Control Proceedings of the IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA Tripoli, Libya 25–27 May 2021
  6. Karadeniz A.M. Alkayyali M. Szemes P.T. Modelling and Simulation of Stepper Motor For Position Control Using LabVIEW Recent Innov. Mechatron. 2018 5 1 5 10.17667/riim.2018.1/7 37283665
  7. Lai C.-K. Ciou J.-S. Tsai C.-C. The Modelling, Simulation and FPGA-Based Implementation for Stepper Motor Wide Range Speed Closed-Loop Drive System Design Machines 2018 6 56 10.3390/machines6040056
  8. Kuert C. Jufer M. Perriard Y. New method for dynamic modeling of hybrid stepping motors Proceedings of the 37th IAS Annual Meeting. Conference Record of the Industry Applications Conference Pittsburgh, PA, USA 13–18 October 2002
  9. Fei W. Kwong Luk P. Shen J. Torque Analysis of Permanent Magnet Flux Switching Machines with Rotor Step Skewing IEEE Trans. Magn. 2012 48 2664 2673 10.1109/TMAG.2012.2198223
  10. Kosaka T. Matsui N. Simple nonlinear magnetic analysis for three-phase hybrid stepping motors Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference Rome, Italy 8–12 October 2000
  11. Bernat J. Kołota J. Stepien S. The FEM analysis of electromagnetic torque of hybrid stepper motor with different load Przegląd Elektrotech. 2013 89 186 189
  12. Kanuch J. Ferkova Ž. Design and simulation of disk stepper motor with permanent magnets Arch. Electr. Eng. 2013 62 281 288 10.2478/aee-2013-0022
  13. Škofic J. Koblar D. Boltežar M. Parametric Study of a Permanent-Magnet Stepper Stroj. Vestn.-J. Mech. Eng. 2014 60 255 264 10.5545/sv-jme.2013.1526
  14. Liu C. Lu J. Wang Y. Lei G. Zhu J. Guo Y. Techniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores Energies 2017 10 1541 10.3390/en10101541
  15. Ge W. Xiao Y. Cui F. Wu X. Liu W. Optimization Comparison of Torque Performance of Axial-Flux Permanent-Magnet Motor Using Differential Evolution and Cuckoo Search Actuators 2024 13 255 10.3390/act13070255
  16. Łukaszewicz K. Testing Virtual Prototype of A New Product in Two Simulation Environments Manag. Prod. Eng. Rev. 2019 10 124 135 10.24425/mper.2019.130505
  17. Kulkarni A. Kapoor A. Iyer M. Kosse V. Virtual prototyping used as validation tool in automotive design Proceedings of the 19th Int. Congress on Modelling and Simulation Perth, Australia 12–16 December 2011
  18. Todorov G. Kamberov K. Semkov M. Thermal CFD study and improvement of table top fridge evaporator by virtual prototyping Case Stud. Therm. Eng. 2017 10 434 442 10.1016/j.csite.2017.09.006
  19. Takei K. Kitagawa W. Takeshita T. Fujimura Y. Analysis of a Serial/Parallel Type of Electromagnetic Actuator Sensors 2020 20 2762 10.3390/s20102762 32408662
  20. Malakov I. Zaharinov V. Optimization of Size Ranges of Technical Products Appl. Mech. Mater. 2016 859 194 203 10.4028/www.scientific.net/AMM.859.194
  21. Nedelchev K. Semkov M. Kralov I. Geometric synthesis of fly wheel energy storage design AIP Conf. Proc. 2021 2333 090029
  22. Blanco S. Zero Prototypes Summit 2024: The future is closer than ever Automotive Engineering 29 May 2024
  23. Mortazavi S. Ince A. An artificial neural network modeling approach for short and long fatigue crack propagation Comput. Mater. Sci. 2020 185 109962 10.1016/j.commatsci.2020.109962
  24. Hajializadeh F. Ince A. Integration of artificial neural network with finite element analysis for residual stress prediction of direct metal deposition process Mater. Today Commun. 2021 27 102197 10.1016/j.mtcomm.2021.102197
  25. Todorov G.D. Kamberov K.H. Black box/white box hybrid method for virtual prototyping validation of multiphysics simulations and testing IOP Conf. Ser. Mater. Sci. Eng. 2020 878 012051 10.1088/1757-899X/878/1/012051
  26. Yang Y.L. Cheng W. Wu S.J. Experiment and Simulation of Electromagnetic Stiffness for Stepper Motor Appl. Mech. Mater. 2010 29–32 1567 1573 10.4028/www.scientific.net/AMM.29-32.1567
  27. Liu C. Zhang H. Wang S. Zhang S. Wang Y. Design, Analysis, and Comparison of Permanent Magnet ClawPole Motor with Concentrated Winding and Double Stator World Electr. Veh. J. 2023 14 237 10.3390/wevj14090237
  28. Santiago G. Hernandez W. Costa de Araujo A.C. Rosa M. González M. Application of product development process (PDP) in the construction of vertical axis wind turbine with movable blades Proceedings of the 21st International Conference on Engineering Design Vancouver, BC, Canada 21–25 August 2017
  29. Todorov G. Ovcharova J. Romanov B. Kamberov K. Interfaces for Embedding CFD Optimisation Workflows into the Product Development Process Adv. Eng. 2010 4 211 222
  30. Bertoni A. Data-driven design in concept development: Systematic review and missed opportunities Proceedings of the Design Society: DESIGN Conference Online 26–29 October 2020 Cambridge University Press Cambridge, UK 2020
  31. Kent L. Snider C. Gopsill J. Hicks B. Mixed reality in design prototyping: A systematic review Des. Stud. 2021 77 101046 10.1016/j.destud.2021.101046
  32. Tseng M.M. Jiao R.J. Su C.J.J. Virtual prototyping for customized product development Integr. Manuf. Syst. 1998 9 334 343 10.1108/09576069810238682
  33. Alexandru C. Virtual Prototyping Platform for Designing Mechanical and Mechatronic Systems Product Design IntechOpen London, UK 2020
  34. Aromaa S. Virtual prototyping in design reviews of industrial systems AcademicMindtrek’17, Proceedings of the 21st International Academic Mindtrek Conference, Tampere, Finland, 20–21 September 2017 Association for Computing Machinery New York, NY, USA 2017
  35. Ma Y. Mashal A.A. Markine V.L. Modelling and experimental validation of dynamic impact in 1:9 railway crossing panel Tribol. Int. 2018 118 208 226 10.1016/j.triboint.2017.09.036
  36. Chacon R. Ivantysynova M. Virtual Prototyping of Axial Piston Machines: Numerical Method and Experimental Validation Energies 2019 12 1674 10.3390/en12091674

Issue

Actuators, vol. 13, 2024, Albania, https://doi.org/10.3390/act13120512

Цитирания (Citation/s):
1. Li, SJ, Zhou, XW, Liu, Y, Chen, JC, Guo, T, Yang, WR, Hou, L, Agile conceptual design and validation based on multi-source product data and large language models: a review, framework, and outlook, JOURNAL OF ENGINEERING DESIGN, 2025, issn: 0954-4828, eissn: 1466-1837, doi: 10.1080/09544828.2025.2476879 - 2025 - в издания, индексирани в Scopus и/или Web of Science
2. Malakov I., Zaharinov V., Hasansabri H., Development of Optimal Size Range of Modules for Driving of Automatic Sliding Doors, 2025, Algorithms, issue 5, vol. 18, DOI 10.3390/a18050248, eissn 19994893 - 2025 - в издания, индексирани в Scopus

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science