Autors: Naydenov A., Todorova S., Tzaneva, B. R., Uzunova E., Kolev H., Karakirova Y., Karashanova D., Velinova R.
Title: Pd-Co Supported on Anodized Aluminium for VOCs Abatement: Reaction Mechanism, Kinetics and Applicability as Monolithic Catalyst
Keywords: C1–C6 alkanes and toluene, catalytic combustion, density functional theory calculations, Mars–van Krevelen mechanism, methane

Abstract: It has been found out that Pd-Co-based catalyst, supported on anodized aluminum, possesses very high activity in combustion reactions of C1–C6 alkanes and toluene. The catalyst characterization has been made by N2-pysisorption, XRD, SEM, XPS, FTIR, TEM, and EPR methods. In view of the great interest, methane combustion was investigated in detail. It is ascertained that the complete oxidation of methane proceeds by dissociative adsorption on PdO and formation of hydroxyl and methyl groups, the former being highly reactive, and it undergoes further reaction to oxygen-containing intermediates, whereupon HCHO is one of them. The presence of Co2+ cations promotes greatly oxygen adsorption. The dissociative adsorption is favored on neighboring Co2+ cations, leading to the formation of bridging peroxides. Further, the oxygen dissociates on the nearest Pd2+ cations. According to the results from the experimental data, instrumental methods, and the observed kinetics and DFT model calculations, it can be concluded that the reaction pathway over Pd+Co/anodic alumina support (AAS) catalyst proceeds most probably through Mars–van Krevelen. The obtained data on the kinetics were used for simulation of the methane combustion in a full-scale adiabatic reactor.

References

  1. United States Environmental Protection Agency Technical Overview of Volatile Organic Compounds. (n.d.) Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds (accessed on 3 November 2017)
  2. Lamonier J.-F. Catalytic Removal of Volatile Organic Compounds Catalysts 2016 6 7 10.3390/catal6010007
  3. Ojala S. Pitkäaho S. Laitinen T. Koivikko N.N. Brahmi R. Gaálová J. Matejova L. Kucherov A. Päivärinta S. Hirschmann C. et al. Catalysis in VOC Abatement Top. Catal. 2011 54 1224 1256 10.1007/s11244-011-9747-1
  4. Ribeiro B.M.B. Pinto J.F. Suppino R.S. Marçola L. Landers R. Tomaz E. Catalytic oxidation at pilot-scale: Efficient degradation of volatile organic compounds in gas phase J. Hazard. Mater. 2018 365 581 589 10.1016/j.jhazmat.2018.11.030 30469038
  5. Kamal M.S. Razzak S.A. Hossain M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review Atmos. Environ. 2016 140 117 134 10.1016/j.atmosenv.2016.05.031
  6. Tomatis M. Xu H.-H. He J. Zhang X.-D. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A review J. Chem. 2016 2016 832482 10.1155/2016/8324826
  7. Revisions to the Greenhouse Gas Reporting Rule and Proposed Confidentiality Determinations for New or Substantially Revised Data Elements Federal Register/Vol. 78, No. 63/Tuesday, 2 April 2013/Proposed Rules, 40 CFR Part 98 Environmental Protection Agency Washington, DC, USA 2013
  8. Raj A. Methane emission control, a review of mobile and stationary source emissions abatement technologies for natural gas engines Johns. Matthey Technol. Rev. 2016 60 228 235 10.1595/205651316X692554
  9. Emission Standards: Europe: Cars and Light Trucks. (n.d.) Available online: https://www.dieselnet.com/standards/eu/ld.php (accessed on 12 January 2017)
  10. Yan J. Handbook of Clean Energy Systems Clean Energy Conversion Technologies 1st ed. John Wiley & Sons Hoboken, NJ, USA 2015 Volume 2
  11. Li J. Zhang J. Lei Z. Chen B. Pd–Co coating onto cordierite monoliths as structured catalysts for methane catalytic combustion Energy Fuels 2011 26 443 450 10.1021/ef201540h
  12. Barbato P.S. Di Sarli V. Landi G. Di Benedetto A. High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths Chem. Eng. J. 2015 259 381 390 10.1016/j.cej.2014.07.123
  13. Landi G. Di Benedetto A. Barbato P.S. Russo G. Di Sarli V. Transient behavior of structured LaMnO3catalyst during methane combustion at high pressure Chem. Eng. Sci. 2014 116 350 358 10.1016/j.ces.2014.04.029
  14. Di Sarli V. Barbato P.S. Di Benedetto A. Landi G. Start-up behavior of a LaMnO3 partially coated monolithic combustor at high pressure Catal. Today 2015 242 200 210 10.1016/j.cattod.2014.07.052
  15. Ercolino G. Karimi S. Stelmachowski P. Specchia S. Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4Chem. Eng. J. 2017 326 339 349 10.1016/j.cej.2017.05.149
  16. Ercolino G. Stelmachowski P. Specchia S. Catalytic Performance of Pd/Co3O4on SiC and ZrO2Open Cell Foams for the Process Intensification of Methane Combustion in Lean Conditions Ind. Eng. Chem. Res. 2017 56 6625 6636 10.1021/acs.iecr.7b01087
  17. Zhao S. Zhang J. Weng D. Wu X. A method to form well-adhered γ-Al2O3layers on FeCrAl metallic supports Surf. Coat. Technol. 2003 167 97 105 10.1016/S0257-8972(02)00859-9
  18. Kucharczyk B. Tylus W. Metallic monolith supported LaMnO3perovskite-based catalysts in methane combustion Catal. Lett. 2007 115 3 4 10.1007/s10562-007-9076-y
  19. Fedotiev N.P. Grilijes S.Y. Electropulido y Anodizacion de Metals Gustavo Gili Editorial Barcelona, Spain 1972 188
  20. González Fernández J.A. Teoría y Práctica de la Lucha Contra la Corrosion CSIC Press Madrid, Spain 1984 461
  21. Hönicke D. Comparative investigations of the catalytic properties of an anodic Al2O3-coated catalyst and of α- and γ-Al2O3bulk catalysts Appl. Catal. 1983 5 199 206 10.1016/0166-9834(83)80132-8
  22. Nourbakhsh N. Smith B. Webster I. Wei J. Tsotsis T. Metal deposition in porous anodic alumina films under hydrotreating conditions J. Catal. 1991 127 178 189 10.1016/0021-9517(91)90218-S
  23. Kozhukhova A.E. du Preez S.P. Bessarabov D. Preparation of highly active and thermally conductive platinum nanoparticle/Ce–Zr–Y mixed oxide/AAO washcoat catalyst for catalytic hydrogen combustion technologies ACS Appl. Nano Mater. 2022 5 8161 8174 10.1021/acsanm.2c01255
  24. Troncoso F.D. Tonetto G.M. Highly stable platinum monolith catalyst for the hydrogenation of vegetable oil Chem. Eng. Proc. 2022 170 108669 10.1016/j.cep.2021.108669
  25. Tonetto G. Troncoso F. Costa T.H.M. Novel monolithic catalysts for the hydrotreating of oleic acid Lat. Am. Appl. Res./Chem. Eng. 2024 54 369 374 10.52292/j.laar.2024.3270
  26. Liu W. Guo D. Xu X. Research progress of palladium catalysts for methane combustion China Pet. Process. Petrochem. Technol. 2012 14 1 9 Available online: http://www.chinarefining.com/EN/Y2012/V14/I3/1 (accessed on 30 September 2012)
  27. Stefanov P. Todorova S. Naydenov A. Tzaneva B. Kolev H. Atanasova G. Stoyanova D. Karakirova Y. Aleksieva K. On the development of active and stable Pd–Co/γ-Al2O3catalyst for complete oxidation of methane J. Chem. Eng. 2015 266 329 338 10.1016/j.cej.2014.12.099
  28. Gregg S.J. Sing K.S.W. The physical adsorption of gasses by mesoporous solids: The type IV isotherm Adsorption, Surface Area and Porosity 2nd ed. Academia Press London, UK 1982 111 190
  29. Leofanti G. Padovan M. Tozzola G. Venturelli B. Surface area and pore texture of catalysts Catal. Today 1998 41 207 219 10.1016/S0920-5861(98)00050-9
  30. Georgieva R. Gancheva M. Ivanov G. Shipochka M. Markov P. Nihtianova D. Iordanova R. Naydenov A. Synthesis, characterization and activity of Pd/CaWO4catalyst in complete oxidation of C1–C6 alkanes and toluene React. Kinet. Catal. Lett. 2021 132 811 827 10.1007/s11144-021-01943-8
  31. Zboray M. Bell A.T. Iglesia E. Role of C−H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes J. Phys. Chem. C 2009 113 12380 12386 10.1021/jp901595k
  32. Deshlahra P. Iglesia E. Reactivity and selectivity descriptors for the activation of C–H bonds in hydrocarbons and oxygenates on metal oxides J. Phys. Chem. C 2016 120 16741 16760 10.1021/acs.jpcc.6b04604
  33. Brooks C. The kinetics of hydrogen and carbon monoxide oxidation over a manganese oxide J. Catal. 1967 8 272 282 10.1016/0021-9517(67)90314-4
  34. Castellazzi P. Groppi G. Forzatti P. Finocchio E. Busca G. Activation process of Pd/Al2O3catalysts for CH4 combustion by reduction/oxidation cycles in CH4-containing atmosphere J. Catal. 2010 275 218 227 10.1016/j.jcat.2010.07.028
  35. Wang F. Zhang L. Xu L. Deng Z. Shi W. Low temperature CO oxidation and CH4combustion over Co3O4nanosheets Fuel 2017 203 419 429 10.1016/j.fuel.2017.04.140
  36. Poinern G.E.J. Ali N. Fawcett D. Progress in nano-engineered anodic aluminum oxide membrane development Materials 2011 4 487 526 10.3390/ma4030487
  37. Kang L. Zhang M. Liu Z.-H. Ooi K. IR spectra of manganese oxides with either layered or tunnel structures Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007 67 864 869 10.1016/j.saa.2006.09.001
  38. Chernyakova K.V. Vrublevsky I.A. Ivanovskaya M.I. Kotsikau D.A. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid J. Appl. Spectrosc. 2012 79 76 82 10.1007/s10812-012-9566-6
  39. Vrublevsky I. Chernyakova K. Bund A. Ispas A. Schmidt U. Effect of anodizing voltage on the sorption of water molecules on porous alumina Appl. Surf. Sci. 2012 258 5394 5398 10.1016/j.apsusc.2012.02.020
  40. Lefez B. Nkeng P. Lopitaux J. Poillerat G. Characterization of cobaltite spinels by reflectance spectroscopy Mater. Res. Bull. 1996 31 1263 1267 10.1016/0025-5408(96)00122-5
  41. Kurajica S. Popović J. Tkalčec E. Gržeta B. Mandić V. The effect of annealing temperature on the structure and optical properties of sol–gel derived nanocrystalline cobalt aluminate spinel Mater. Chem. Phys. 2012 135 587 593 10.1016/j.matchemphys.2012.05.030
  42. Wang C. Liu S. Liu L. Bai X. Synthesis of cobalt–aluminate spinels via glycine chelated precursors Mater. Chem. Phys. 2006 96 361 370 10.1016/j.matchemphys.2005.07.066
  43. Saniger J.M. Al-O Infrared Vibrational Frequencies of g-alumina Mater. Lett. 1995 22 109 113 10.1016/0167-577X(94)00234-7
  44. Chapskaya A.Y. Radishevskaya N.I. Kasatskii N.G. Lepakova O.K. Naiborodenko Y.S. Vereshchagin V.V. The effect of composition and synthesis conditions on the structure of cobalt-bearing pigments of the spinel type J. Glass Ceram. 2005 62 388 390 10.1007/s10717-006-0016-x
  45. Arnoldy P. Moulijn J. Temperature-programmed reduction of CoO/AI2O3catalysts J. Catal. 1985 93 38 54 10.1016/0021-9517(85)90149-6
  46. Kliche G. Far-infrared reflection spectra of Pdo, PdS, PdSe and PtS Infrared Phys. 1985 25 381 383 10.1016/0020-0891(85)90111-3
  47. O’Shea V.d.l.P. Álvarez-Galván M. Fierro J. Arias P. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol Appl. Catal. B Environ. 2005 57 191 199 10.1016/j.apcatb.2004.11.001
  48. O’shea V.d.l.P. Alvarez-Galvan M. Requies J. Barrio V. Arias P. Cambra J. Güemez M. Fierro J. Synergistic effect of Pd in methane combustion PdMnOx/Al2O3catalysts Catal. Commun. 2007 8 1287 1292 10.1016/j.catcom.2006.11.010
  49. Fan X. Wang F. Zhu T. He H. Effects of Ce on catalytic combustion of methane over Pd-Pt/Al2O3catalyst J. Environ. Sci. 2012 24 507 511 10.1016/S1001-0742(11)60798-5 22655366
  50. Kibis L.S. Stadnichenko A.I. Koscheev S.V. Zaikovskii V.I. Boronin A.I. Highly oxidized palladium nanoparticles comprising Pd4+species: Spectroscopic and structural aspects, thermal stability, and reactivity J. Phys. Chem. C 2012 116 19342 19348 10.1021/jp305166k
  51. Venezia A. Di Carlo G. Liotta L. Pantaleo G. Kantcheva M. Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS Appl. Catal. B Environ. 2011 106 529 539 10.1016/j.apcatb.2011.06.013
  52. Otto K. Haack L. Devries J. Identification of two types of oxidized palladium on γ-alumina by X-ray photoelectron spectroscopy Appl. Catal. B Environ. 1992 1 1 12 10.1016/0926-3373(92)80003-I
  53. Barr T.L. An ESCA study of the termination of the passivation of elemental metals J. Phys. Chem. 1978 82 1801 1810 10.1021/j100505a006
  54. Bi Y. Lu G. Catalytic CO oxidation over palladium supported NaZSM-5 catalysts Appl. Catal. B Environ. 2003 41 279 286 10.1016/S0926-3373(02)00166-2
  55. Hu T. Wang Y. Zhang L. Tang T. Xiao H. Chen W. Zhao M. Jia J. Zhu H. Facile synthesis of PdO-doped Co3O4nanoparticles as an efficient bifunctional oxygen electrocatalyst Appl. Catal. B Environ. 2018 243 175 182 10.1016/j.apcatb.2018.10.040
  56. He H. Alberti K. Barr T.L. Klinowski J. ESCA studies of aluminophosphate molecular sieves J. Phys. Chem. 1993 97 13703 13707 10.1021/j100153a045
  57. Garbowski E. Guenin M. Marion M.-C. Primet M. Catalytic properties and surface states of cobalt-containing oxidation catalysts Appl. Catal. 1990 64 209 224 10.1016/S0166-9834(00)81562-6
  58. Szegedi A. Popova M. Dimitrova A. Cherkezova-Zheleva Z. Mitov I. Effect of the pretreatment conditions on the physico-chemical and catalytic properties of cobalt- and iron-containing Ti-MCM-41 materials Microporous Mesoporous Mater. 2010 136 106 114 10.1016/j.micromeso.2010.08.004
  59. Green U. Aizenshtat Z. Ruthstein S. Cohen H. Reducing the spin–spin interaction of stable carbon radicals Phys. Chem. Chem. Phys. 2013 15 6182 6184 10.1039/c3cp50533b 23518921
  60. Motoji I. New Application of Electron Paramagnetic Resonance World Scientific Publisher Singapore 1993 143
  61. Filimonov I.N. Ikonnikov I.A. Loginov A.Y. EPR investigation of paramagnetic species on palladium-promoted yttria and lanthana J. Chem. Soc. Faraday Trans. 1994 90 219 226 10.1039/ft9949000219
  62. Naccache C. Primet M. Mathieu M.V. Study of hydrogen and carbon monoxide interactions with palladium-Y zeolite by ESR and IR spectroscopy in molecular sieves Advances in Chemistry Meier W. American Chemical Society Washington, DC, USA 1973
  63. Michalik J. Narayna M. Kevan L. Studies of the interaction of palladium(3+) and palladium(1+) with organic adsorbates, water, and molecular oxygen in palladium-Ca-X zeolite by electron spin resonance and electron spin-echo modulation spectroscopy J. Phys. Chem. 1985 89 4553 4560 10.1021/j100267a028
  64. Cottrell T.L. The Strengths of Chemical Bonds 2nd ed. Butterworth London, UK 1958
  65. Antony A. Asthagiri A. Weaver J.F. Pathways and kinetics of methane and ethane C–H bond cleavage on PdO(101) J. Chem. Phys. 2013 139 104702 10.1063/1.4819909
  66. Chin Y.-H. Buda C. Neurock M. Iglesia E. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH4Reactions on Pd Catalysts J. Am. Chem. Soc. 2013 135 15425 15442 10.1021/ja405004m
  67. Mayernick A.D. Janik M.J. Methane oxidation on Pd–Ceria: A DFT study of the mechanism over PdxCe1−xO2, Pd, and PdO J. Catal. 2011 278 16 25 10.1016/j.jcat.2010.11.006
  68. Duprat F. Light-off curve of catalytic reaction and kinetics Chem. Eng. Sci. 2002 57 901 911 10.1016/S0009-2509(01)00409-2
  69. Todorova S. Naydenov A. Kolev H. Holgado J. Ivanov G. Kadinov G. Caballero A. Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts Appl. Catal. A Gen. 2012 413 43 51 10.1016/j.apcata.2011.10.041
  70. Vannice M.A. Kinetics of Catalytic Reactions Springer Science-Business Media, Inc. New York, NY, USA 2005
  71. Mars P. van Krevelen D. Oxidations carried out by means of vanadium oxide catalysts Chem. Eng. Sci. 1954 3 41 59 10.1016/S0009-2509(54)80005-4
  72. Ciuparu D. Perkins E. Pfefferle L. In situ DR-FTIR investigation of surface hydroxyls on γ-Al2O3supported PdO catalysts during methane combustion Appl. Catal. A Gen. 2004 263 145 153 10.1016/j.apcata.2003.12.006
  73. Ciuparu D. Pfefferle L. Contributions of lattice oxygen to the overall oxygen balance during methane combustion over PdO-based catalysts Catal. Today 2002 77 167 179 10.1016/S0920-5861(02)00243-2
  74. Schwartz W.R. Pfefferle L.D. Combustion of methane over palladium-based catalysts: Support interactions J. Phys. Chem. C 2012 116 8571 8578 10.1021/jp2119668
  75. Łojewska J. Kołodziej A. Żak J. Stoch J. Pd/Pt promoted Co3O4catalysts for VOCs combustion: Preparation of active catalyst on metallic carrier Catal. Today 2005 105 655 661 10.1016/j.cattod.2005.06.011
  76. Živcová Z. Gregorová E. Pabst W. Smith D.S. Michot A. Poulier C. Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent J. Eur. Ceram. Soc. 2009 29 347 353 10.1016/j.jeurceramsoc.2008.06.018
  77. Gómez-Serrano V. González-García C. González-Martín M. Nitrogen adsorption isotherms on carbonaceous materials. Comparison of BET and Langmuir surface areas Powder Technol. 2001 116 103 108 10.1016/S0032-5910(00)00367-3
  78. Barrett E.P. Joyner L.G. Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms J. Am. Chem. Soc. 1951 73 373 380 10.1021/ja01145a126
  79. Rosmini C. Urrea M.P. Tusini E. Indris S. Kovacheva D. Karashanova D. Kolev H. Zimina A. Grunwaldt J.-D. Rønning M. et al. Unveiling the synergistic effects of pH and Sn content for tuning the catalytic performance of Ni0/NixSny intermetallic compounds dispersed on Ce-Zr mixed oxides in the aqueous phase reforming of ethylene glycol Appl. Catal. B Environ. 2024 350 123904 10.1016/j.apcatb.2024.123904
  80. Vreven T. Frisch M.J. Kudin K.N. Schlegel H.B. Morokuma K. Geometry optimization with QM/MM methods II: Explicit quadratic coupling Mol. Phys. 2006 104 701 714 10.1080/00268970500417846
  81. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Scalmani G. Barone V. Petersson G.A. Nakatsuji H. et al. Gaussian 16, Revision C.01 Gaussian, Inc. Wallingford, CT, USA 2016
  82. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 1993 98 5648 5652 10.1063/1.464913
  83. Peng C. Ayala P.Y. Schlegel H.B. Frisch M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states J. Comput. Chem. 1996 17 49 56 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  84. Grimme S. Antony J. Ehrlich S. Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 2010 132 154104 154119 10.1063/1.3382344 20423165
  85. Bolton K. Hase W.L. Peslherbe G.H. Modern Methods for Multidimensional Dynamics Computation in Chemistry Thompson D.L. World Scientific Singapore 1998 143
  86. Belfiore L.A. Transport Phenomena for Chemical Reactor Design John Wiley & Sons, Inc Hoboken, NJ, USA 2003
  87. Nauman E.B. Chemical Reactor Design, Optimization, and Scaleup McGraw-Hill Companies New York, NY, USA 2008
  88. Tomašić V. Application of the monoliths in DeNOx catalysis Catal. Today 2006 119 106 113 10.1016/j.cattod.2006.08.047
  89. Tomašić V. Gomzi Z. Experimental and theoretical study of NO decomposition in a catalytic monolith reactor Chem. Eng. Proc. 2004 43 765 774 10.1016/S0255-2701(03)00045-X
  90. Tomašić V. Jović F. State-of-the-art in the monolithic catalysts/reactors Appl. Catal. A Gen. 2006 311 112 121 10.1016/j.apcata.2006.06.013
  91. Satterfield C.N. Mass Transfer in Heterogeneous. Catalysis MIT Press Cambridge, MA, USA 1970
  92. Levenspiel O. Chemical Reactor Engineering 3rd ed. John Wiley & Sons, Inc. New York, NY, USA 1999

Issue

Catalysts, vol. 14, pp. 736, 2024, , https://doi.org/10.3390/catal14100736

Copyright MDPI

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus