Autors: Dimitrijević M.S., Christova, M. D., Yubero C., Sahal-Bréchot S.
Title: Stark broadening of Sn II spectral lines
Keywords: Atomic data, Atomic processes, Spectral lines, Stark widths and shifts

Abstract: We used the semiclassical perturbation method for the calculation of Stark broadening parameters, full widths at half intensity maximum and shifts for 44 spectral lines of singly charged tin ion (Sn II), for collisions with electrons and protons. The obtained results have been compared with the existing experimental and theoretical results and used to demonstrate the influence of Stark broadening mechanism on spectral lines of Sn II in stellar atmospheres.

References

  1. Beauchamp, A., Wesemael F, F., Bergeron, P., Spectroscopic studies of db white dwarfs: improved stark profiles for optical transitions of neutral helium. Astrophys J Suppl Ser 108 (1997), 559–573.
  2. Dimitrijević, M.S., Sahal-Bréchot, S., On the application of stark broadening data determined with a semiclassical perturbation approach. Atoms 2 (2014), 357–377.
  3. Konjević, N., Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications. Phys Rep 316 (1999), 339–401.
  4. Torres, J., van de Sande, M.J., van der Mullen, J.J.A.M., Gamero, A., Sola, A., Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges. Spectrochim Acta B 61 (2006), 58–68.
  5. Griem, H.R., Plasma spectroscopy in inertial confinement fusion and soft x-ray laser research. Phys Fluids 4 (1992), 2346–2361.
  6. Iglesas, E., Griem, H.R., Welch, B., Weaver, J., UV line profiles of B V from a 10-Ps KrF-laser-produced plasma. Astrophys Space Sci 256 (1997), 327–331.
  7. Gornushkin, I.B., King, L.A., Smith, B.W., Omenetto, N., Winefordner, J.D., Line broadening mechanisms in the low pressure laser-induced plasma. Spectrochim Acta 54 (1999), 1207–1217.
  8. Nicolosi, P., Garifo, L., Jannitti, E., Malvezzi, A.M., Tondello, G., Broadening and self-absorption of the resonance lines of H-like light ions in laser-produced plasmas. Nuovo Cimento B 48 (1978), 133–151 Nuovo Cimento B, 48 133.
  9. Sorge, S., Wierling, A., Röpke, G., Theobald, W., Sauerbrey, R., Wilhein, T., Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra. J Phys B 33 (2000), 2983–3000.
  10. Wang, J.S., Griem, H.R., Huang, Y.W., F. Böttcher, F., Measurements of line broadening of B V Hα and Lδ in a laser-produced plasma. Phys Rev A 45 (1992), 4010–4014.
  11. Csillag, L., Dimitrijević, M.S., On the Stark broadening of the 537.8 nm and 441.6 nm Cd+lines excited in a hollow cathode laser discharge. Appl Phys B 78 (2004), 221–223.
  12. Yilbas, B.S., Patel, F., Karatas, C., Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface opt. Laser Technol 74 (2015), 36–42.
  13. Hoffman, J., Szymański, Z., Azharonok, V., Plasma plume induced during laser welding of magnesium alloys PLASMA. Sadowski, J., et al. (eds.) Int. Conf. on Research and Applications of Plasmas; 3rd German-Polish Conf.on Plasma Diagnostics for Fusion and Applications; 5th French-Polish Seminar on Thermal Plasma in Space and Laboratory (AIP Cof. Proc.) 812(Opole - Turawa (Poland), 6–9), 2005, 469–472.
  14. Ganeev, R.A., High-order harmonics generation in Cd and Pd laser-induced plasmas. Optic Express 31 (2023), 26626–26642.
  15. Adelman, S.J., Bidelman, W.P., Pyper, D.M., The peculiar A star γ Equulei - A line identification study of λλ 3086-3807. Astrophys J Suppl 40 (1979), 371–424.
  16. Cowley, C.R., Ryabchikova, T., Kupka, F., Bord, D.J., Mathys, G., Bidelman, W.P., Abundances in Przybylski's star. Mon Not R Astron Soc 317 (2000), 299–309.
  17. Smirnov, O.M., Ryabchikova, T.A., MultiProfile: a software package for approximation of line profiles in stellar spectra. Astron Rep 39 (1995), 755–760.
  18. Roederer, I.U., et al. The R-process alliance: A nearly complete R-process abundance template derived from ultraviolet spectroscopy of the R-process-enhanced metal-poor star HD 222925. Astrophys J Suppl, 260, 2022, 27.
  19. Ernandes, H., Castro, M.J., Barbuy, B., Spite, M., Hill, V., Castilho, B., Evans, C.J., Reanalysis of neutron-capture elements in the benchmark r-rich star CS 31082-001. Mon Not R Astron Soc 524 (2023), 656–677.
  20. Shah, S.P., Ezzeddine, R., Roederer, I.U., Hansen, T.T., Placco, V.M., et al. The R-process alliance: detailed chemical composition of an r-process enhanced star with UV and optical spectroscopy. Mon Not R Astron Soc 529 (2024), 1917–1940.
  21. Miller, M.H., Roig, R.A., Bengtson, R.D., Experimental transition probabilities and Stark-broadening parameters of neutral and singly ionized tin. Phys Rev A 20 (1979), 499–506.
  22. Lakićević, I.S., Purić, J., Stark shift trends in homologous ions. J Phys B 16 (1983), 1525–1530.
  23. Purić, J., Ćuk, M., Lakićević, I.S., Regularities and systematic trends in the Stark broadening and shift parameters of spectral lines in plasma. Phys Rev A 32 (1985), 1106–1114.
  24. Djeniže, S., Srećković, A., Labat, J., Stark width and shift of singly-ionized tin spectral lines. Z Phys D 17 (1990), 85–86.
  25. Djeniže, S., Labat, J., Konjević, R., On the stark broadening regularities along a homologous sequence of the IV b subgroup in the periodic system. Contrib Plasma Phys 32:2 (1992), 69–75.
  26. Martínez, B., Blanco, F., Experimental and theoretical stark width and shift parameters of neutral and singly ionized tin lines. J Phys B 32 (1999), 241–247.
  27. Djeniže, S., Srećković, A., Nikolić, Z., On the sn I and Sn II Stark broadening. J Phys B 39 (2006), 3037–3045.
  28. Alonso-Medina, A., Colón, C., Measured stark widths of several Sn I and Sn II spectral lines in a laser-induced plasma. Astrophys J 672 (2008), 1286–1291.
  29. Scheers, J., Schupp, R., Meijer, R., Ubachs, W., Hoekstra, R., Versolato, O.O., Time- and space-resolved optical Stark spectroscopy in the afterglow of laser-produced tin-droplet plasma. Phys Rev E, 102, 2020, 013204.
  30. Konjević, N., Lesage, A., Fuhr, J.R., Wiese, W.L., Experimental stark widths and shifts for spectral lines of neutral and ionized atoms. J Phys Chem Ref Data 31 (2002), 819–927.
  31. Lesage, A., Experimental stark widths and shifts for spectral lines of neutral and ionized atoms: A critical review of selected data for the period 2001–2007. New Astron 52 (2009), 471–535.
  32. Blagojević, B., Konjević, N., Semiclassical calculations of electron impact stark widths and shifts of singly ionized atom lines revisited. J Quant Spectrosc Radiat Transfer 198 (2017), 9–24.
  33. Hey, J.D., Breger, P., Stark broadening of isolated lines emitted by singly-ionized tin. J Quant Specrosc Radiat Transfer, 23, 1980, 311.
  34. Konjević, R., Konjević, N., Proc. 20th SPIG. 2000, Institute of Physics Publishing, Belgrade.
  35. Colón, C., Alonso-Medina, A., Rivero, C., Fernández, F., Stark width and shift parameter predictions and regularities of Sn II. Phys Scripta 73 (2006), 410–419.
  36. Lakićević, I.S., Estimated stark widths and shifts of neutral atom and singly charged ion resonance lines. Astron Astrophys 127 (1983), 37–41.
  37. Sahal-Bréchot, S., Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astron, Astrophysics 1 (1969), 91–123.
  38. Sahal-Bréchot, S., Impact theory of the broadening and shift of spectral lines due to electron and ion in a plasma (continued). Astron Astrophys 2 (1969), 322–354.
  39. Sahal-Bréchot, S., Stark broadening of isolated lines in the impact approximation. Astron Astrophys 35 (1974), 319–321.
  40. Sahal-Bréchot, S., Broadening of ionic isolated lines by interactions with positively charged perturbers in the quasistatic limit. Astron Astrophys 245 (1991), 322–330.
  41. Fleurier, C., Sahal-Bréchot, S., Chapelle, J., Stark profiles of some ion lines of alkaline earth elements. J Quant Spectrosc Radiat Transfer 17 (1977), 595–604.
  42. Dimitrijević, M.S., Sahal-Bréchot, S., Bommier, V., Stark broadening of spectral lines of multicharged ions of astrophysical interest, I - C IV lines. Astron Astrophys Suppl 89 (1991), 581–590.
  43. Dimitrijević, M.S., Sahal-Bréchot, S., Stark broadening of Li II spectral lines. Phys Scr 54 (1996), 50–55.
  44. Sahal-Bréchot, S., Dimitrijević, M.S., Ben Nessib, N., Widths and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: An outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations. Atoms 2 (2014), 225–252.
  45. Sahal-Bréchot, S., The semiclassical limit of the gailitis formula applied to electron impact broadening of spectral lines of ionized atoms. Atoms, 9(2), 2021, 29.
  46. Haris, K., Kramida, A., Tauheed, A., Extended and revised analysis of singly ionized tin: Sn II. Phys Scripta, 89, 2014, 115403.
  47. Kramida A, Ralchenko Yu, Reader J, NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2024, September 30]. National Institute of Standards and Technology, Gaithersburg, MD.
  48. Bates, D.R., Damgaard, A., The calculation of the absolute strengths of spectral lines. Philos Trans R Soc Lond Ser A 242 (1949), 101–122.
  49. Oertel, G.K., Shomo, L.P., Tables for the calculation of radial multipole matrix elements by the coulomb approximation. Astrophys J Suppl Ser 16 (1968), 175–218.
  50. Van Regemorter, H., Binh, Dy Hoang, Prud'homme, M., Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. J Phys B 12 (1979), 1053–1061.
  51. Dimitrijević, M.S., Sahal-Bréchot, S., Stark broadening of neutral helium lines. J Quant Spectrosc Radiat Transfer 31 (1984), 301–313.
  52. Wiese, W.L., Konjević, N., Regularities and similarities in plasma broadened spectral line widths (Stark widths). J Quant Spectrosc Radiat Transfer 28 (1982), 185–198.
  53. Wiese, W.L., Konjević, N., Regularities in experimental Stark shifts. J Quant Spectrosc Radiat Transfer 47 (1992), 185–200.
  54. Behringer, K., Thoma, P., Electron impact widths of some Ar(II)-u.v.-multiplets. J Quant Spectrosc Radiat Transfer 20 (1978), 615–619.
  55. Dimitrijević, M.S., Tankosić, D., On the variation of Stark line shifts within a given spectrum in the case of irregular energy level structure. Phys Scr 62 (2000), 177–182.
  56. Tankosić, D., Č. Popović, L., Dimitrijević, M.S., Electron-impact broadening parameters for Ra II spectral lines. Phys Scr 63 (2001), 54–61.
  57. Kurucz, R.L., Model atmospheres for G, F, A, B, and O stars. Astrophys J Suppl Ser, 40, 1979 1–3401979, ApJS, 40 1.
  58. Wesemael, F., Atmospheres for hot, high-gravity stars. II. Pure helium models. Astrophys J Suppl Ser 45 (1981), 177–257.
  59. Sahal-Bréchot S, Dimitrijević MS, Moreau N. STARK-B database, [online]. Available: http://stark-b.obspm.fr [2024, September 20]. Observatory of Paris, LERMA and Astronomical Observatory of Belgrade.
  60. Sahal-Bréchot, S., Dimitrijević, M.S., Moreau, N., Ben Nessib, N., The STARK-b database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Phys Scripta, 50, 2015, 054008.
  61. Dubernet, M.L., Boudon, V., Culhane, J.L., Dimitrijević, M.S., Fazliev, A.Z., et al. Virtual atomic and molecular data centre. J Quant Spectrosc Radiat Transfer, 111, 2010, 2151 http://www.vamdc.org.
  62. Dubernet, M.L., Antony, B.K., Ba, Y.A., Yu. L. Babikov, M.S., Bartschat, K., et al. The virtual atomic and molecular data centre (VAMDC) consortium. J Phys B, 49, 2016, 074003.
  63. Albert, D., Antony, B.K., Ba, Y.A., Babikov, Y.L., Bollard, P., Boudon, V., Delahaye, F., Del Zanna, G., Dimitrijević, M.S., et al. A decade with VAMDC: Results and ambitions. Atoms, 8, 2020, 76.

Issue

Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 330, 2025, Albania, https://doi.org/10.1016/j.jqsrt.2024.109241

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science