Autors: Kotsilkova R., Georgiev V., Aleksandrova, M. P., Batakliev T., Ivanov E., Spinelli G., Tomov, R. T., Tsanev, T. D. Title: Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing Keywords: 3D printing, electrical performance, GNP/PVDF nanocomposite, resistive heating, thermal propertiesAbstract: This study developed a novel 3D-printable poly(vinylidene fluoride) (PVDF)-based nanocomposite incorporating 6 wt% graphene nanoplatelets (GNPs) with programmable characteristics for resistive heating applications. The results highlighted the significant effect of a controlled printing direction (longitudinal, diagonal, and transverse) on the electrical, thermal, Joule heating, and thermo-resistive properties of the printed structures. The 6 wt% GNP/PVDF nanocomposite exhibited a high electrical conductivity of 112 S·m−1 when printed in a longitudinal direction, which decreased significantly in other directions. The Joule heating tests confirmed the material’s efficiency in resistive heating, with the maximum temperature reaching up to 65 °C under an applied low voltage of 2 V at a raster angle of printing of 0°, while the heating Tmax decreased stepwise with 10 °C at the 45° and the 90° printing directions. The repeatability of the Joule heating performance was verified through multiple heating and cooling cycles, demonstrating consistent maximum temperatures across several tests. The effect of sample thickness, controlled by the number of printed layers, was investigated, and the results underscore the advantages of programmable 3D printing orientation in thin layers for enhanced thermal stability, tailored electrical conductivity, and efficient Joule heating capabilities of 6 wt% GNP/PVDF composites, positioning them as promising candidates for next-generation 3D-printed electronic devices and self-heating applications. References - Brunelle M. Ferralli I. Whitsitt R. Medicus K. Current Use and Potential of Additive Manufacturing for Optical Applications SPIE Optifab Rochester, NY, USA 2017 10448 10.1117/12.2279824
- Diegel O. Singamneni S. Huang B. Gibson I. The future of electronic products: Conductive 3D printing? Innovative Developments in Design and Manufacturing Reddy J.N. CRC Press Boca Raton, FL, USA 2010 397 403
- Cadman D. Zhang S. Vardaxoglou Y. Fused deposition modelling for microwave circuits & antennas Proceedings of the 2016 International Symposium on Antennas and Propagation Okinawa, Japan 24–28 October 2016 418 419
- Cader M. The estimation method of strength for technology-oriented 3D printing parts of mobile robots Adv. Intell. Syst. Comput. 2017 550 367 379 10.1007/978-3-319-54042-9_34
- Klippstein H. Diaz De Cerio Sanchez A. Hassanin H. Zweiri Y. Seneviratne L. Fused deposition modeling for unmanned aerial vehicles (UAVs): A review Adv. Eng. Mater. 2018 20 1700552 10.1002/adem.201700552
- Salentijn G.I.J. Oomen P.E. Grajewski M. Verpoorte E. Fused deposition modeling 3D printing for (bio)analytical device fabrication: Procedures, materials, and applications Anal. Chem. 2017 89 7053 7061 10.1021/acs.analchem.7b00828 28628294
- Penumakala P. Santo J. Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites Compos. Part B 2020 201 108336 10.1016/j.compositesb.2020.108336
- Kwok S.W. Goh K.H.H. Tan Z.D. Tan S.T.M. Tjiu W.W. Soh J.Y. Ng Z.J.G. Chan Y.Z. Hui H.K. Goh K.E.J. Electrically conductive filament for 3D-printed circuits and sensors Appl. Mater. Today 2017 9 167 175 10.1016/j.apmt.2017.07.001
- Balandin A.A. Thermal properties of graphene and nanostructured carbon materials Nat. Mater. 2011 10 569 581 10.1038/nmat3064
- Stankovich S. Dikin D.A. Dommett G.H.B. Kohlhaas K.M. Zimney E.J. Stach E.A. Piner R.D. Nguyen S.T. Ruoff R.S. Graphene-based composite materials Nature 2006 442 282 286 10.1038/nature04969
- Wei X. Li D. Jiang W. Gu Z. Wang X. Zhang Z. Sun Z. 3D printable graphene composite Sci. Rep. 2015 5 11181 10.1038/srep11181
- Fraser D. Naim H.P. Arden L.M. Weiss L. Adarsh D.R. Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling Int. J. Adv. Manuf. Technol. 2018 99 1215 1224 10.1007/s00170-018-2490-z
- Kotsilkova R. Tabakova S. Ivanova R. Effect of graphene nanoplatelets and multiwalled carbon nanotubes on the viscous and viscoelastic properties and printability of polylactide nanocomposites Mech. Time-Depend. Mater. 2022 26 611 632 10.1007/s11043-021-09503-2
- Spinelli G. Guarini R. Kotsilkova R. Batakliev T. Ivanov E. Romano V. Experimental and Simulation Studies of Temperature Effect on Thermophysical Properties of Graphene-based Polylactic Acid Materials 2022 15 986 10.3390/ma15030986 35160931
- Kotsilkova R. Ivanov E. Georgiev V. Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application Polymers 2020 12 1208 10.3390/polym12061208 32466410
- Graphene 3D Lab Conductive Graphene PLA Filament Available online: https://www.indiamart.com/proddetail/conductive-graphene-pla-filament-24681126055.html (accessed on 15 September 2024)
- Graphene 3D Lab Conductive Flexible TPU Filament Available online: https://filament2print.com/gb/graphene/785-graphene-flexible-conductive-tpu.html (accessed on 10 October 2024)
- Walter S. Steinmann W. Schütte J. Seide G. Gries T. Roth G. Wierach P. Sinapius M. Characterization of piezoelectric PVDF monofilaments Mater. Technol. 2011 26 140 145 10.1179/175355511X13007211258962
- Rahman M.A. Lee B.C. Phan D.T. Chung G.S. Fabrication and characterization of highly efficient flexible energy harvesters using PVDF/graphene nanocomposites Smart Mater. Struct. 2013 22 085017 10.1088/0964-1726/22/8/085017
- Layek R.K. Samanta S. Chatterjee D.P. Nandi A.K. Physical and mechanical properties of poly(methyl methacrylate) -functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation Polymer 2010 51 5846 5856 10.1016/j.polymer.2010.09.067
- Li Y.C. Tjong S.C. Li R.K.Y. Electrical conductivity and dielectric response of poly(vinylidene fluoride) graphite nanoplatelet composites Synth. Met. 2010 160 1912 1919 10.1016/j.synthmet.2010.07.009
- Ferreira A. Martinez M. Ansón-Casaos A. Gómez-Pineda L. Vaz F. Lanceros-Mendez S. Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites Carbon 2013 61 568 576 10.1016/j.carbon.2013.05.038
- Kumar V. Rupinder Singh R. Ahuja I.P.S. 3D printed graphene-reinforced polyvinylidene fluoride composite for piezoelectric properties 4D Printing, Fundamentals and Applications Singh R. A volume in Additive Manufacturing Materials and Technologies Elsevier Amsterdam, The Netherlands 2022 51 66 10.1016/B978-0-12-823725-0.00009-6
- Tian X. Itkis M.E. Bekyarova E.B. Haddon R.C. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites Sci. Rep. 2013 3 1710 10.1038/srep01710
- Shahil K.M.F. Balandin A.A. Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials Nano Lett. 2012 12 861 867 10.1021/nl203906r
- Debelak B. Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties Carbon 2007 45 1727 1734 10.1016/j.carbon.2007.05.010
- Kumar P. Yu S. Shahzad F. Hong S.M. Kim Y.H. Koo C.M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides Carbon 2016 101 120 128 10.1016/j.carbon.2016.01.088
- Balam A. Cen-Puc M. May-Pat A. Abot J.L. Avilés F. Influence of Polymer Matrix on the Sensing Capabilities of Carbon Nanotube Polymeric Thermistors Smart Mater. Struct. 2020 29 015012 10.1088/1361-665X/ab4e08
- Prolongo S.G. Moriche R. Jimenez-Suarez A. Delgado A. Urena A. Printable self-healing coatings based on the use of carbon nanoreinforcements Polym. Compos. 2020 41 271 278 10.1002/pc.25367
- Sangroniz L. Landa M. Fernandez M. Santamaria A. Matching rheology, conductivity and Joule effect in PU/CNT nanocomposites Polymers 2021 13 950 10.3390/polym13060950 33808778
- Stoyanova S. Ivanov E. Hegde L.R. Georgopoulou A. Clemens F. Bedoui F. Kotsilkova R. PVDF Hybrid Nanocomposites with Graphene and Carbon Nanotubes and Their Thermoresistive and Joule Heating Properties Nanomaterials 2024 14 901 10.3390/nano14110901
- Kausar A. Ahmad I. Zhao T. Aldaghri O. Eisa M.H. Polymer/Graphene Nanocomposites via 3D and 4D Printing—Design and Technical Potential Processes 2023 11 868 10.3390/pr11030868
- Elder B. Neupane R. Tokita E. Ghosh U. Hales S. Kong Y.L. Nanomaterial Patterning in 3D Printing Adv. Mater. 2020 32 e1907142 10.1002/adma.201907142
- Pentek A. Nyitrai M. Schiffer A. Abraham H. Bene M. Molnar E. Told R. Maroti P. The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics Crystals 2020 10 398 10.3390/cryst10050398
- Abdalla A. Hamzah H. Keattch O. Covill D. Patel B. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters Electrochim. Acta 2020 354 136618 10.1016/j.electacta.2020.136618
- Tirado-Garcia I. Garcia-Gonzalez D. Garzon-Hernandez S. Rusinek A. Robles G. Martinez-Tarifa J. Arias A. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours Compos. Struct. 2021 265 113744 10.1016/j.compstruct.2021.113744
- Liang Z. Yao Y. Jiang B. Wang X. Xie H. Jiao M. Liang C. Qiao H. Kline D. Zachariah M.R. et al. 3D Printed Graphene-Based 3000 K Probe Adv. Funct. Mater. 2021 31 2102994 10.1002/adfm.202102994
- Guadagno L. Aliberti F. Longo R. Raimondo M. Pantani R. Sorrentino A. Catauro M. Vertuccio L. Electrical anisotropy controlled heating of acrylonitrile butadiene styrene 3D printed parts Mater. Des. 2023 225 111507 10.1016/j.matdes.2022.111507
- Müller M.T. Hilarius K. Liebscher M. Lellinger D. Alig I. Pötschke P. Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites Materials 2017 10 545 10.3390/ma10050545 28772907
- Orellana J. Araya-Hermosilla E. Pucci A. Araya-Hermosilla R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites Polymers 2024 16 2273 10.3390/polym16162273 39204493
- Liu J. Lu X. Wu C. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes Membranes 2013 3 389 405 10.3390/membranes3040389
- Steinmann W. Walter S. Seide G. Gries T. Roth G. Schubnell M. Structure, properties and phase transitions of melt-spun poly(vinylidene fluoride) fibers J. Appl. Polym. Sci. 2011 120 21 35 10.1002/app.33087
- Nakagawa K. Ishida Y. Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy J. Polym. Sci. 1973 11 2153 2171 10.1002/pol.1973.180111107
- Islam A. Khan A.N. Fayzan M. Shakir M.F. Islam K. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites Mater. Res. Express 2020 7 015017 10.1088/2053-1591/ab5f82
- Söderholm K.J. Influence of silane treatment and filler fraction on thermal expansion of composite resins J. Dent. Res. 1984 63 1321 1326 10.1177/00220345840630111401
- Irshad H.M. Hakeem A.S. Raza K. Baroud T.N. Ehsan M.A. Ali S. Tahir M.S. Design, Development and Evaluation of Thermal Properties of Polysulphone–CNT/GNP Nanocomposites Nanomaterials 2021 11 2080 10.3390/nano11082080
Issue
| Nanomaterials, vol. 14, pp. 1840, 2024, , https://doi.org/10.3390/nano14221840 |
|