Autors: Dimitrov, S. I. Title: Prime numbers of the form [n ctan θ(log n)] Keywords: Exponential sums, Lower bound, PrimesAbstract: Let [·] be the floor function. In the present paper we prove that when 11 is a fixed, then there exist infinitely many prime numbers of the form [nctanθ(logn)].References - R. C. Baker, G. Harman, J. Rivat, Primes of the form[nc], J. Number Theory, 50, (1995), 261 – 277.
- X. Cao, W. Zhai, The distribution of square-free numbers of the form[nc], J. Théor. Nombres Bordeaux, 10, (1998), 287 – 299.
- X. Cao, W. Zhai, The distribution of square-free numbers of the form[nc] (II), Acta Math. Sinica (Chin. Ser.), 51, (2008), 1187 – 1194.
- S.W. Graham G. Kolesnik Van der Corput’s Method of Exponential Sums 1991 New York Cambridge University Press 10.1017/CBO9780511661976
- D.R. Heath-Brown Prime numbers in short intervals and a generalized Vaughan identity Canad. J. Math. 1982 34 1365 1377 678676 10.4153/CJM-1982-095-9
- D.R. Heath-Brown The Piatetski-Shapiro prime number theorem J. Number Theory 1983 16 242 266 698168 10.1016/0022-314X(83)90044-6
- C.-H. Jia On Piatetski-Shapiro prime number theorem II Science in China Ser. A 1993 36 913 926
- C.-H. Jia, On Piatetski-Shapiro prime number theorem, Chinese Ann. Math., 15, (1994), 9–22.
- G. A. Kolesnik, The distribution of primes in sequnces of the form[nc], Mat. Zametki, 2, (1967), 117–128.
- G. A. Kolesnik, Primes of the form[nc], Pacific J. Math., 118, (1985), 437–447.
- A. Kumchev, On the distribution of prime numbers of the form[nc], Glasg. Math. J., 41, (1999), 85 – 102.
- D. Leitmann Abschatzung trigonometrischer summen J. Reine Angew. Math. 1980 317 209 219 581343
- H.Q. Liu J. Rivat On the Piatetski-Shapiro prime number theorem Bull. London Math. Soc. 1992 24 143 147 1148674 10.1112/blms/24.2.143
- I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form[f(n)], Mat. Sb., 33, (1953), 559 – 566.
- J. Rivat Autour d’un theorem de Piatetski-Shapiro 1992 Thesis Université de Paris Sud
- J. Rivat, P. Sargos, Nombres premiers de la forme[nc], Canad. J. Math., 53, (2001), 414 – 433.
- J. Rivat, J. Wu, Prime numbers of the form[nc], Glasg. Math. J, 43, (2001), 237 – 254.
- J.D. Vaaler Some extremal problems in Fourier analysis Bull. Amer. Math. Soc. 1985 12 183 216 776471 10.1090/S0273-0979-1985-15349-2
Issue
| Indian Journal of Pure and Applied Mathematics, vol. 55, pp. 1198-1209, 2024, India, https://doi.org/10.1007/s13226-023-00420-3 |
|