Autors: Todorov, G. D., Kamberov, K. H., Zlatev, B. N.
Title: Research and Development of a Large-Scale Axial-Flux Generator for Hydrokinetic Power System
Keywords: AFPM, electricity generator, electromagnetics, hydrokinetic power system, large-scale structure, virtual prototyping

Abstract: Featured Application: A developed large-scale axial-flux generator is used for electricity generation at a run-of-river hydrokinetic power system. The system is to be used in a river with a high volumetric flow rate in Asia. The study demonstrates an application of actual technologies and tools for the development of an axial-flux electricity generator. The specifics of its application—a run-of-river sited power station—predefine some of the design parameters that are close to a wind turbine generator. An extensive study of available solutions is used as a starting point for further concept development. The study aims to provide a viable solution for a large-scale electrical machine. A step-based methodology is defined for concept parameters’ assessment and a feasibility study. It demonstrates the advantages of virtual prototyping when assessing various design parameters such as air gaps, coil thickness, and the number of rotor disks. Several simulations over different virtual prototypes provide sufficient information to elaborate an improved design concept. The major result is a ready-for-detailed design concept, with defined major parameters and studied work behavior for a specific, large structure of an electrical machine. Another important result is the presentation of the application of virtual prototyping in the assessment of large structures, for which physical prototyping is an expensive and time-consuming approach. The application of virtual prototyping at a very early product development stage is an effective way to undertake efficient solutions involving the concept of the product.

References

  1. Agency I.E. Electricity Mid-Year Update 1st ed. IEA Publications Paris, France 2024
  2. Banja M. Monforti F. Scarlat N. Review of Technical Assessment of National Renewable Energy Action Plans. JRC Scientific and Policy Reports 1st ed. ISPRA, European Commission, Directorate-General Joint Research Centre, Institute for Energy and Transport Milano, Italy 2018
  3. Quaranta E. Stream water wheels as renewable energy supply in flowing water: Theoretical considerations, performance assessment and design recommendations Energy Sustain. Dev. 2018 45 96 109 10.1016/j.esd.2018.05.002
  4. de Faria F. Jaramillo P. The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development Energy Sustain. Dev. 2017 41 24 35 10.1016/j.esd.2017.08.001
  5. Niebuhr C.M. van Dijk M. Neary V. S. Bhagwan J.N. A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential Renew. Sustain. Energy Rev. 2019 113 109240 10.1016/j.rser.2019.06.047
  6. Chica E. Rubio-Clemente A. Design of Zero Head Turbines for Power Generation Renewable Hydropower Technologies InTech Open Zagreb, Croatia 2017 25 50
  7. Muljadi E. Wright A. Gevorgian V. Donegan J. Marnagh C. McEntee J. Power Generation for River and Tidal Generators 1st ed. National Renewable Energy Laboratory Golden, CO, USA 2016
  8. Balaka R. Rachman A. Delly J. Blade Number Effect for A Horizontal Axis River Current Turbine at A Low Velocity Condition Utilizing A Parametric Study with Mathematical Model of Blade Element Momentum J. Clean Energy Technol. 2014 2 1 5 10.7763/JOCET.2014.V2.79
  9. Khan M. Bhuyan G. Iqbal M. Quaicoe J. Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Ridal Applications: A Technology Status Review Appl. Energy 2009 2 1823 1835 10.1016/j.apenergy.2009.02.017
  10. Babu B. Divya S. Comparative study of different types of generators used in wind turbine and reactive power compensation IOSR J. Electr. Electron. Eng. 2017 2 95 99
  11. Beainy A. Maatouk C. Moubayed N. Kaddah F. Comparison of different types of generator for wind energy conversion system topologies Proceedings of the 3rd International Conference on Renewable Energies for Developing Countries (REDEC) Zouk Mosbeh, Lebanon 29 September 2016 1 6
  12. Parol M. Arendarski B. Parol R. Calculating electric power and energy generated in small wind turbine-generator sets in very short-term horizon E3S Web Conf. 2019 84 01006 10.1051/e3sconf/20198401006
  13. Sheryazov S. Issenov S. Iskakov R. Kaidar A.B. The main types of wind turbines-generators in the power supply system Power Eng. Res. Equip. Tech. 2022 23 24 33 10.30724/1998-9903-2021-23-5-24-33
  14. Cao W. Xie Y. Tan Z. Wind Turbine Generator Technologies; In Advances in Wind Power 1st ed. Carriveau R. Intech Houston, TX, USA 2012
  15. Douglas S. Large Hydrokinetic Turbine Generation Is Here! Canadian Perspectives Evol. Technol. 2017 1 1
  16. Koondhar M.A. Afridi S.K. Saand A.S. Khatri A.R. Albasha L. Alaas Z. Graba B.B. Touti E. Aoudia M. Ahmed M. Eco-Friendly Energy from Flowing Water: A Review of Floating Waterwheel Power Generation IEEE Access 2024 12 90181 90203 10.1109/ACCESS.2024.3419019
  17. Izzat F. Sarip S. Kaidi H.M. Shamsudin N.M. Hashim N. Omar N.A. Mat Desa S. Design Process and Study of Pico Hydroelectric Floating Waterwheel Turbine Int. J. Emerg. Trends Eng. Res. 2020 11 15 21
  18. Gandhi J.R. Jha H. Jha S.N. Patel D.S. Renewable Energy Based Floating Power Generator (Rivers and Canals) Int. J. Eng. Res. Appl. 2016 6 49 52
  19. Kougias I. Aggidis G. Avellan F. Deniz S. Lundin U. Moro A. Muntean S. Novara D. Perez-Díaz J.I. Quaranta E. et al. Analysis of emerging technologies in the hydropower sector Renew. Sustain. Energy Rev. 2019 113 109257 10.1016/j.rser.2019.109257
  20. Quaranta E. Revelli M. Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations Renew. Sustain. Energy Rev. 2018 97 414 427 10.1016/j.rser.2018.08.033
  21. Quaranta E. Revelli M. CFD simulations to optimize the blade design of water wheels. Drinking Water Energy Sci. 2017 10 27 32
  22. Hameed J.A. Saeed A.T. Rajab M.H. Design and Study of Hydroelectric Power Plant by Using Overshot and Undershot Waterwheels Int. J. Energy Opt. Eng. 2019 8 39 59 10.4018/IJEOE.2019100103
  23. Carruthers D. Carruthers P. Wade R. A new, more efficient waterwheel design for very-low-head hydropower schemes Proc. Inst. Civ. Eng. Civ. Eng. 2018 171 129 134 10.1680/jcien.17.00051
  24. Todorov G. Kamberov K. Semkov M. Improvement of undershot water wheel performance through virtual prototyping AIP Conf. Proc. 2021 2333 110011
  25. Mostaman N.A. Sulaiman E. Jenal M. Overview of Axial Flux Permanent Magnet Generator for Small-Scale Industry IOP Conf. Ser. Earth Environ. Sci. 2023 1261 012004 10.1088/1755-1315/1261/1/012004
  26. Kim S.-A. Li J. Choi D.-W. Cho Y.-H. Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Int. J. Power Syst. 2017 2 1 6
  27. Kobayashi H. Doi Y. Miyata K. Minowa T. Design of the axial-flux permanent magnet coreless generator for the multi-megawatts wind turbine Proc. Japan Wind Energy Symp. 2008 30 191 194
  28. Shokri M. Behjat V. Rostami N. Characterization of Axial Flux Permanent Magnet Generator Under Various Geometric Parameters for Improved Performance Gazi Univ. J. Sci. 2015 28 285 294
  29. Lee J.-Y. Lee J.-H. Nguyen T.K. Axial-Flux Permanent-Magnet Generator Design for Hybrid Electric Propulsion Drone Applications Energies 2021 14 8509 10.3390/en14248509
  30. Shariati O. Behnamfar A. Potter B. An Integrated Elitist Approach to the Design of Axial Flux Permanent Magnet Synchronous Wind Generators (AFPMWG) Energies 2022 15 3262 10.3390/en15093262
  31. Gołębiowski L. Gołębiowski M. Mazu D. Analysis of axial flux permanent magnet generator COMPEL Int. J. Comp. Math. Electr. Electron. Eng. 2019 38 1177 1189 10.1108/COMPEL-10-2018-0415
  32. Todorov G. Kamberov K. Ivanov T. Parametric optimisation of resistance temperature detector design using validated virtual prototyping approach Case Stud. Therm. Eng. 2021 28 101302 10.1016/j.csite.2021.101302
  33. Malakov I. Zaharinov V. Optimization of size ranges of technical products Appl. Mech. Mater. 2016 859 194 203 10.4028/www.scientific.net/AMM.859.194
  34. Usman H. Ikram J. Alimgeer K.S. Yousuf M. Bukhari S.S. Ro J.-S. Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction Mathematics 2021 9 1738 10.3390/math9151738
  35. Grozdanov D. Tarnev K. Hinov N. Electromagnetic Modeling and Thermal Analysis of a Non-Axisymmetric System for Induction Brazing Energies 2020 13 3656 10.3390/en13143656

Issue

Applied Sciences (Switzerland), vol. 14, 2024, , https://doi.org/10.3390/app142210564

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science