Autors: Hinov, N. L., Gilev B. Title: Neural Network-Based Design of a Buck Zero-Voltage-Switching Quasi-Resonant DC–DC Converter Keywords: neural networks, power electronic device design, quasi-resonant DC–DC converter, zero-voltage switchingAbstract: In this paper, a design method using a neural network of a zero-voltage-switching buck quasi-resonant DC–DC converter is presented. The use of this innovative approach is justified because the design of quasi-resonant DC–DC converters is more complex compared to that of classical DC–DC converters. The converter is a piecewise linear system mathematically described by Kirchhoff’s laws and represented through switching functions. In this way, a mathematical model is used to generate data on the behavior of the state variables obtained under various design parameters. The obtained data are appropriately normalized, and a neural network is trained with them, which in practice serves as the inverse model of the device. An example is considered to demonstrate how this network can be used to design the converter. The key advantages of the proposed methodology include reducing the development time, improving energy efficiency, and the ability to automatically adapt to different loads and input conditions. This approach offers new opportunities for the design of advanced DC–DC converters in industries with high efficiency and performance requirements, such as the automotive industry and renewable energy sources. References - Krishnamoorthy H.S. Krein P. Zahnstecher B. From ‘Power Electronics Inside’ to ‘Human-Centered Power Electronics’ IEEE Power Electron. Mag. 2023 10 61 63 10.1109/MPEL.2023.3301416
- Pollefliet J. Power Electronics: Switches and Converters Elsevier Inc. Amsterdam, The Netherlands 2017 10.1016/C2017-0-00718-8
- Tan D. Emerging System Applications and Technological Trends in Power Electronics: Power electronics is increasingly cutting across traditional boundaries IEEE Power Electron. Mag. 2015 2 38 47 10.1109/MPEL.2015.2422051
- Mohan W.P.R.N. Undeland T.M. Power Electronics: Converters, Applications, and Design 3rd ed. Wiley Hoboken, NJ, USA 2007
- Bose B.K. Power Electronics: My Life and Vision for the Future [My View] IEEE Ind. Electron. Mag. 2022 16 65 72 10.1109/MIE.2022.3166271
- Rashid M.H. Power Electronics Handbook Elsevier Inc. Amsterdam, The Netherlands 2023 10.1016/C2021-0-02072-1
- Kassakian J.G. Perreault D.J. Verghese G.C. Schlecht M.F. Principles of Power Electronics Cambridge University Press Cambridge, UK 2023 10.1017/9781009023894
- Hasan M. Application of power electronics in power systems Handbook of Research on Power and Energy System Optimization IGI Global Hershey, PA, USA 2018 10.4018/978-1-5225-3935-3.ch010
- Rajabi A. Marangalu M.G. Shahir F.M. Sedaghati R. Power electronics converters-An overview Intelligent Control of Medium and High Power Converters Institution of Engineering & Technology Stevenage, UK 2023 10.1049/pbpo239e_ch1
- Lopusina I. Stanojevic A. Bouvier Y.E. Grbovic P.J. Comparison Between ZVS and ZCS Series Resonant Balancing Converters Proceedings of the 22nd International Symposium on Power Electronics, Ee 2023 Novi Sad, Serbia 25–28 October 2023 10.1109/Ee59906.2023.10346103
- Kazimierczuk M.K. Czarkowski D. Resonant Power Converters John Wiley & Sons Hoboken, NJ, USA 2012
- Zhang J. Shi Y. Zhan Z.H. Power electronic circuits design: A particle swarm optimization approach Simulated Evolution and Learning Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Springer Berlin/Heidelberg, Germany 2008 10.1007/978-3-540-89694-4_61
- Asadi F. Simulation of Power Electronics Circuits with MATLAB®/Simulink®: Design, Analyze, and Prototype Power Electronics Springer Nature Dordrecht, The Netherlands 2022 10.1007/978-1-4842-8220-5
- Batarseh I. Harb A. Power Electronics: Circuit Analysis and Design Springer Cham, Switzerland 2017 10.1007/978-3-319-68366-9
- Sitek W. Trzaska J. Practical aspects of the design and use of the artificial neural networks in materials engineering Metals 2021 11 1832 10.3390/met11111832
- Kanwar N. Goswami A.K. Mishra S.P. Design Issues in Artificial Neural Network (ANN) Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages, IoT-SIU 2019 Ghaziabad, India 18–19 April 2019 10.1109/IoT-SIU.2019.8777337
- Ibrahim N.F. Mahmoud M.M. Al Thaiban A.M. Barnawi A.B. Elbarbary Z.S. Omar A.I. Abdelfattah H. Operation of Grid-Connected PV System with ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality IEEE Access 2023 11 106859 106876 10.1109/ACCESS.2023.3317980
- Lakhdara A. Bahi T. Moussaoui A. MPPT Techniques of the Solar PV under Partial Shading Proceedings of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, SSD 2021 Monastir, Tunisia 22–25 March 2021 10.1109/SSD52085.2021.9429315
- Mohammad K. Musa S.M. Optimization of Solar Energy Using Artificial Neural Network Controller Proceedings of the 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022, Al-Khobar Saudi Arabia 4–6 December 2022 10.1109/CICN56167.2022.10008271
- Susmitha P. Parventhan K. Umamaheswari S. Artificial Neural Network Control for Solar—Wind Based Micro Grid Proceedings of the MysuruCon 2022—2022 IEEE 2nd Mysore Sub Section International Conference Mysuru, India 16–17 October 2022 10.1109/MysuruCon55714.2022.9972739
- Gangula S.D. Nizami T.K. Udumula R.R. Chakravarty A. Singh P. Adaptive neural network control of DC–DC power converter Expert. Syst. Appl. 2023 229 120362 10.1016/j.eswa.2023.120362
- Nizami T.K. Chakravarty A. Neural network integrated adaptive backstepping control of DC-DC boost converter IFAC-PapersOnLine 2020 53 549 554 10.1016/j.ifacol.2020.06.092
- Hussein A.I. Shigdar B. Almatrafi L. Alaidroos B. Alsharif F. Aly R.H.M. Design of a DC/DC Converter with a PID Controller and Backpropagation Neural Network for Electric Vehicles Proceedings of the 20th International Learning and Technology Conference, L and T 2023 Jeddah, Saudi Arabia 26 January 2023 10.1109/LT58159.2023.10092291
- Siddhartha V. Hote Y.V. Robust PID Controller Design for DC-DC Converters: The Buck Converter Proceedings of the 2022 IEEE Electrical Power and Energy Conference, EPEC 2022 Victoria, BC, Canada 5–7 December 2022 10.1109/EPEC56903.2022.10000130
- Lin H. Chung H.S.-H. Shen R. Xiang Y. Enhancing Stability of DC Cascaded Systems with CPLs Using MPC Combined with NI and Accounting for Parameter Uncertainties IEEE Trans. Power Electron. 2024 39 5225 5238 10.1109/TPEL.2024.3359672
- Qiao Z. Yang R. Liao W.Q. Yu W. Fang Y. Impedance modeling, Parameters sensitivity and Stability analysis of hybrid DC ship microgrid Electr. Power Syst. Res. 2024 226 109901 10.1016/j.epsr.2023.109901
- Lu C. Li J. Chen K. Zhou W. Wu Q. Ke J. System-level Parameters Identification for DC-DC Converters Based on Artificial Neural Network Algorithm Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 Nashville, TN, USA 29 October–2 November 2023 10.1109/ECCE53617.2023.10362646
- Zhao S. Peng Y. Zhang Y. Wang H. Physics-informed Machine Learning for Parameter Estimation of DC-DC Converter Proceedings of the IEEE Applied Power Electronics Conference and Exposition—APEC Houston, TX, USA 20–24 March 2022 10.1109/APEC43599.2022.9773482
- Chen S. Zhang J. Wang S. Wen P. Zhao S. Circuit Parameter Identification of Degrading DC-DC Converters Based on Physics-informed Neural Network Proceedings of the 2022 Prognostics and Health Management Conference, PHM-London 2022 London, UK 27–29 May 2022 10.1109/PHM2022-London52454.2022.00053
- Kabalci Y. Kabalci E. Padmanaban S. Holm-Nielsen J.B. Blaabjerg F. Internet of things applications as energy internet in smart grids and smart environments Electronics 2019 8 972 10.3390/electronics8090972
- Padmanaban S. Palanisamy S. Chenniappan S. Holm-Nielsen J.B. Artificial Intelligence-Based Smart Power Systems Wiley Hoboken, NJ, USA 2022 10.1002/9781119893998
- Haque A. Shah N. Malik J.A. Malik A. Fundamentals of power electronics in smart cities Smart Cities: Power Electronics, Renewable Energy, and Internet of Things CRC Press Boca Raton, FL, USA 2024 10.1201/9781032669809-1
- Lin J. Gebbran D. Dragicevic T. Surrogate-Assisted Combinatorial Optimization of EV Fast Charging Stations IEEE Trans. Transp. Electrif. 2023 10 2183 2191 10.1109/TTE.2023.3266550
- Tian F. Cobaleda D.B. Martinez W. Artificial-Intelligence based DC-DC Converter Efficiency Modelling and Parameters Optimization Proceedings of the 24th European Conference on Power Electronics and Applications, EPE 2022 ECCE Europe Hanover, Germany 5–9 September 2022
- Li X. Zhang X. Lin F. Blaabjerg F. Artificial-Intelligence-Based Design for Circuit Parameters of Power Converters IEEE Trans. Ind. Electron. 2022 69 11144 11155 10.1109/TIE.2021.3088377
- Balci S. Kayabasi A. Yildiz B. ANN-based estimation of the voltage ripple according to the load variation of battery chargers Int. J. Electron. 2020 107 17 27 10.1080/00207217.2019.1591530
- Virgili M. James P. Forsyth A.J. Black-box model for estimating efficiency curves in DC-DC converters for energy storage systems Proceedings of the IEEE Vehicular Technology Conference Helsinki, Finland 19–22 June 2022 10.1109/VTC2022-Fall57202.2022.10012920
- Akca H. Aktas A. Examination and experimental comparison of dc/dc buck converter topologies used in wireless electric vehicle charging applications Int. J. Optim. Control Theor. Appl. 2024 14 81 89 10.11121/ijocta.1503
- Vakovsky D. Hinov N. Informational model verification of ZVS Buck quasi-resonant DC-DC converter AIP Conf. Proc. 2016 1789 060016 10.1063/1.4968508
Issue
| Mathematics, vol. 12, 2024, , https://doi.org/10.3390/math12213305 |
Copyright MDPI AG |