Autors: Mladenov, V. M., Maratos, N. Title: Neural Networks for Solving Constrained Optimization Problems Keywords: neural networks, constrained optimization, penalty function Abstract: In this paper we consider several Neural Network architectures for solving constrained optimization problems with inequality constrains. We present a new architecture based on the exact penalty function approach. Simulation results based on SIMULINK® models are given and compared. References Issue
|
Цитирания (Citation/s):
1. Begashaw, N., Comert, G. and Medhin, N.G., 2023. “Modeling Covid-19 Epidemic with Quarantine and Lockdown and Analysis,” Dynamic Systems and Applications, vol. 32, issue (1). ISSN: 1056-2176, pp. 275 - 293 (Google Scholar) - 2023 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
2. Rengifo C., Chardonnet J.R., Paillot, D., Mohellebi H., Kemeny, A., Solving the constrained problem in model predictive control based motion cueing algorithm with a neural network approach, 2018. (Google Scholar) - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
3. McClenny L., Braga-Neto, U., Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism, 2020., arXiv:2009.04544. (Google Scholar) - 2020 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
4. Rachmad A., Rochman E.M.S., Kuswanto D., Santosa I., Hapsari R.K., Indriyani T., Purwanti, E., 2018, December. Comparison of the Traveling Salesman Problem Analysis Using Neural Network Method. In International Conference on Science and Technology (ICST 2018) (pp. 1057-1061). Atlantis Press. (Google Scholar) - 2018 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science
Вид: пленарен доклад в международен форум, индексирана в Google Scholar