Autors: Bozhilov, I. B., Petkova, R. R., Tonchev K., Manolova, A. H. Title: A Systematic Survey Into Compression Algorithms for Three-Dimensional Content Keywords: 3D content compression, mesh, point cloud, semantic compression, volumetric contentAbstract: This systematic review investigates compression algorithms for three-dimensional content, focusing on recent advancements. It categorizes the methodologies into traditional, learning-based, and semantic approaches. The review includes 52 studies selected based on criteria including publication date, peer review status, and relevance to the field. The analysis highlights the significant contributions of learning-based and semantic techniques in advancing 3D content compression. Notably, some reviewed learning-based methods demonstrated over 95% improvement in rate optimization compared to standard point cloud compression methods. Despite the comprehensive coverage, the review acknowledges certain limitations due to potential biases in study selection and the inherent heterogeneity of the included research. The findings underscore the importance of continued exploration in learning-based and semantic compression for enhancing the efficiency and applicability of 3D content technologies. References - R. Petkova, V. Poulkov, A. Manolova, and K. Tonchev, "Challenges in implementing low-latency holographic-Type communication systems, " Sensors, vol. 22, no. 24, p. 9617, Dec. 2022.
- I. Bozhilov, R. Petkova, K. Tonchev, A. Manolova, and V. Poulkov, "HOLOTWIN: A modular and interoperable approach to holographic telepresence system development, " Sensors, vol. 23, no. 21, p. 8692, Oct. 2023.
- I. F. Akyildiz and H. Guo, "Holographic-Type communication: A new challenge for the next decade, " ITU J. Future Evolving Technol., vol. 3, no. 2, pp. 421-442, 2022.
- A. Manolova, K. Tonchev, V. Poulkov, S. Dixir, and P. Lindgren, "Context-Aware holographic communication based on semantic knowledge extraction, " Wireless Pers. Commun., vol. 120, no. 3, pp. 2307-2319, Oct. 2021.
- C. Cao, M. Preda, and T. B. Zaharia, "3D point cloud compression: A survey, " in Proc. Int. Conf. 3D Web Technol., 2019, pp. 1-9.
- E. Camuffo, D. Mari, and S. Milani, "Recent advancements in learning algorithms for point clouds: An updated overview, " Sensors, vol. 22, no. 4, p. 1357, Feb. 2022.
- A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, "3D mesh compression: Survey, comparisons, and emerging trends, " ACM Comput. Surv., vol. 47, no. 3, pp. 1-41, Apr. 2015.
- P. Alliez, "Recent advances in compression of 3D meshes, " in Proc. 13th Eur. Signal Process. Conf., Sep. 2005, pp. 1-4.
- J. Peng, C.-S. Kim, and C.-C. Jay Kuo, "Technologies for 3D mesh compression: A survey, " J. Vis. Commun. Image Represent., vol. 16, no. 6, pp. 688-733, Dec. 2005.
- MPEG-3DG WG 7. G-PCC Codec Description v9. Technical Report N0011, document MPEG-3DG. G-PCC Codec Description v9. ISO/IEC JTC1/SC29/WG7 N0011, ISO/IEC JTC1/SC29/WG7, 2020.
- MPEG-3DG. V-PCC Codec Description, document ISO/IEC JTC1/SC29/WG7, N00012, 2020.
- E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos, "6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication, " IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42-50, Sep. 2019.
- I. Bozhilov, K. Tonchev, A. Manolova, and R. Petkova, "3D human body models compression and decompression algorithm based on graph convolutional networks for holographic communication, " in Proc. 25th Int. Symp. Wireless Pers. Multimedia Commun. (WPMC), Oct. 2022, pp. 532-537.
- A.Vetro, A. M. Tourapis, K.Müller, and T. Chen, "3D-TV content storage and transmission, " IEEE Trans. Broadcast., vol. 57, no. 2, pp. 384-394, Jun. 2011.
- I. Wald, N. Morrical, and S. Zellmann, "A memory efficient encoding for ray tracing large unstructured data, " IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 1, pp. 583-592, Jan. 2022.
- A. Maggiordomo, H. Moreton, and M. Tarini, "Micro-mesh construction, " ACM Trans. Graph., vol. 42, no. 4, pp. 1-18, Aug. 2023.
- R. Petkova, I. Bozhilov, A. Manolova, K. Tonchev, and V. Poulkov, "On the way to holographic-Type communications: Perspectives and enabling technologies, " IEEE Access, vol. 12, pp. 59236-59259, 2024.
- Z. Wang, M. Wen, Y. Xu, Y. Zhou, J. H. Wang, and L. Zhang, "Communication compression techniques in distributed deep learning: A survey, " J. Syst. Archit., vol. 142, Sep. 2023, Art. no. 102927.
- M. J. Page, "PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews, " Brit. Med. J., vol. 372, p. 160, Mar. 2021.
- P. Gao, S. Luo, and M. Paul, "Rate-distortion modeling for bit rate constrained point cloud compression, " IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 5, pp. 2424-2438, May 2023.
- Q. Liu, H. Yuan, R. Hamzaoui, H. Su, J. Hou, and H. Yang, "Reduced reference perceptual quality model with application to rate control for video-based point cloud compression, " IEEE Trans. Image Process., vol. 30, pp. 6623-6636, 2021.
- L. Li, Z. Li, S. Liu, and H. Li, "Occupancy-map-based rate distortion optimization and partition for video-based point cloud compression, " IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 1, pp. 326-338, Jan. 2021.
- L. Li, Z. Li, S. Liu, and H. Li, "Rate control for video-based point cloud compression, " IEEE Trans. Image Process., vol. 29, pp. 6237-6250, 2020.
- S. Rhyu, J. Kim, J. Im, and K. Kim, "Contextual homogeneity-based patch decomposition method for higher point cloud compression, " IEEE Access, vol. 8, pp. 207805-207812, 2020.
- L. Li, Z. Li, S. Liu, and H. Li, "Efficient projected frame padding for video-based point cloud compression, " IEEE Trans. Multimedia, vol. 23, pp. 2806-2819, 2021.
- E. d'Eon, B. Harrison, T. Myers, and P. A. Chou, 8I Voxelized Full Bodies-A Voxelized Point Cloud Dataset, document ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document WG11M40059/WG1M74006, 2017.
- S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, Common Test Conditions for Point Cloud Compression, document ISO/IEC JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.
- A. L. Souto, V. F. Figueiredo, P. A. Chou, and R. L. de Queiroz, "Set partitioning in hierarchical trees for point cloud attribute compression, " IEEE Signal Process. Lett., vol. 28, pp. 1903-1907, 2021.
- S. Milani, E. Polo, and S. Limuti, "A transform coding strategy for dynamic point clouds, " IEEE Trans. Image Process., vol. 29, pp. 8213-8225, 2020.
- Y. Xu, W. Hu, S. Wang, X. Zhang, S. Wang, S. Ma, Z. Guo, and W. Gao, "Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds, " IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 5, pp. 1968-1982, May 2021.
- S. Gu, J. Hou, H. Zeng, and H. Yuan, "3D point cloud attribute compression via graph prediction, " IEEE Signal Process. Lett., vol. 27, pp. 176-180, 2020.
- E. Ramalho, E. Peixoto, and E. Medeiros, "Silhouette 4D with context selection: Lossless geometry compression of dynamic point clouds, " IEEE Signal Process. Lett., vol. 28, pp. 1660-1664, 2021.
- H. Roodaki, M. Dehyadegari, and M. N. Bojnordi, "G-Arrays: Geometric arrays for efficient point cloud processing, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 1925-1929.
- M. Krivokuca, P. A. Chou, and P. Savill, 8i Voxelized Surface Light Field (8IVSLF) Dataset, document ISO/IEC JTC1/SC29/WG11 MPEG, Input Document m42914, 2018.
- D. C. Garcia, C. Dorea, R. U. B. Ferreira, D. R. Freitas, R. L. de Queiroz, R. Higa, I. Seidel, and V. Testoni, "Differential transform for videobased plenoptic point cloud coding, " IEEE Trans. Image Process., vol. 31, pp. 1994-2003, 2022.
- G. Sandri, R. De Queiroz, and P. A. Chou, "Compression of plenoptic point clouds using the region-Adaptive hierarchical transform, " in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018, pp. 1153-1157.
- M. Krivokuca and C. Guillemot, "Colour compression of plenoptic point clouds using RAHT-KLT with prior colour clustering and specular/diffuse component separation, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 1978-1982.
- M. Krivokuca, E. Miandji, C. Guillemot, and P. A. Chou, "Compression of plenoptic point cloud attributes using 6-D point clouds and 6-D transforms, " IEEE Trans. Multimedia, vol. 25, pp. 593-607, 2023.
- N. Morrical, W. Usher, I. Wald, and V. Pascucci, "Efficient space skipping and adaptive sampling of unstructured volumes using hardware accelerated ray tracing, " in Proc. IEEE Visualizat. Conf. (VIS), Oct. 2019, pp. 256-260.
- P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec, "Baking neural radiance fields for real-Time view synthesis, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5855-5864.
- T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, "HoloCast+: Hybrid digital-Analog transmission for graceful point cloud delivery with graph Fourier transform, " IEEE Trans. Multimedia, vol. 24, pp. 2179-2191, 2022.
- M. P. Mollah, B. Debnath, M. Sankaradas, S. Chakradhar, and A. Mueen, "Efficient compression method for roadside LiDAR data, " in Proc. 31st ACM Int. Conf. Inf. Knowl. Manage., Oct. 2022, pp. 3371-3380.
- M. G. Finley and T. Bell, "Two-channel 3D range geometry compression with primitive depth modification, " Opt. Lasers Eng., vol. 150, Mar. 2022, Art. no. 106832.
- B. J. Van Rensburg, W. Puech, and J.-P. Pedeboy, "The first draco 3D object crypto-compression scheme, " IEEE Access, vol. 10, pp. 10566-10574, 2022.
- Google. (2014). Draco 3D Graphics Compression. [Online]. Available: https://google.github.io/draco/
- B.-S. Park, S. Lee, J.-T. Park, J.-K. Kim, W. Kim, and Y.-H. Seo, "Dynamic reconstruction and mesh compression of 4D volumetric model using correspondence-based deformation for streaming service, " Sensors, vol. 22, no. 22, p. 8815, Nov. 2022.
- E. C. Kaya and I. Tabus, "Lossless compression of point cloud sequences using sequence optimized CNN models, " IEEE Access, vol. 10, pp. 83678-83691, 2022.
- D. T. Nguyen, K. G. Nambiar, and A. Kaup, "Deep probabilistic model for lossless scalable point cloud attribute compression, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023, pp. 1-5.
- D. T. Nguyen and A. Kaup, "Lossless point cloud geometry and attribute compression using a learned conditional probability model, " IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 8, pp. 4337-4348, Aug. 2023.
- J. Wang, D. Ding, Z. Li, X. Feng, C. Cao, and Z. Ma, "Sparse tensorbased multiscale representation for point cloud geometry compression, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 7, pp. 9055-9071, Jul. 2023.
- Y. Zhu, Y. Huang, X. Qiao, Z. Tan, B. Bai, H. Ma, and S. Dustdar, "A semantic-Aware transmission with adaptive control scheme for volumetric video service, " IEEE Trans. Multimedia, vol. 25, pp. 7160-7172, 2022.
- N. Frank, D. Lazzarotto, and T. Ebrahimi, "Latent space slicing for enhanced entropy modeling in learning-based point cloud geometry compression, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 4878-4882.
- B. Attal, J.-B. Huang, M. Zollhöfer, J. Kopf, and C. Kim, "Learning neural light fields with ray-space embedding, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 19787-19797.
- Z. Wan, C. Richardt, A. Božic, C. Li, V. Rengarajan, S. Nam, X. Xiang, T. Li, B. Zhu, R. Ranjan, and J. Liao, "Learning neural duplex radiance fields for real-Time view synthesis, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 27, Jun. 2023, pp. 8307-8316.
- C. Reiser, R. Szeliski, D. Verbin, P. Srinivasan, B. Mildenhall, A. Geiger, J. Barron, and P. Hedman, "MERF: Memory-efficient radiance fields for real-Time view synthesis in unbounded scenes, " ACM Trans. Graph., vol. 42, no. 4, pp. 1-12, Aug. 2023.
- E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. de Mello, O. Gallo, L. Guibas, J. Tremblay, S. Khamis, T. Karras, and G. Wetzstein, "Efficient geometry-Aware 3D generative adversarial networks, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 16123-16133.
- S. Rojas, J. Zarzar, J. C. Pérez, A. Sanakoyeu, A. Thabet, A. Pumarola, and B. Ghanem, "Re-ReND: Real-Time rendering of NeRFs across devices, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 3609-3618.
- M. J. Mirza, I. Shin, W. Lin, A. Schriebl, K. Sun, J. Choe, M. Kozinski, H. Possegger, I. S. Kweon, K.-J. Yoon, and H. Bischof, "MATE: Masked autoencoders are online 3D test-Time learners, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 16663-16672.
- A. Akhtar, Z. Li, G. Van der Auwera, and J. Chen, "Dynamic point cloud interpolation, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 2574-2578.
- D. Kulon, R. A. Güler, I. Kokkinos, M. M. Bronstein, and S. Zafeiriou, "Weakly-supervised mesh-convolutional hand reconstruction in the wild, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 4989-4999.
- Y. Nie, A. Dai, X. Han, and M. NieBner, "Learning 3D scene priors with 2D supervision, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 34, Jun. 2023, pp. 792-802.
- P. Palafox, A. Božic, J. Thies, M. Nießner, and A. Dai, "NPMs: Neural parametric models for 3D deformable shapes, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 12675-12685.
- Y. Siddiqui, J. Thies, F. Ma, Q. Shan, M. Nießner, and A. Dai, "RetrievalFuse: Neural 3D scene reconstruction with a database, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 12548-12557.
- Z. Chen and T.-K. Kim, "Learning feature aggregation for deep 3D morphable models, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13159-13168.
- A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, "Generating 3D faces using convolutional mesh autoencoders, " in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 704-720.
- B. Y. Feng and A. Varshney, "SIGNET: Efficient neural representation for light fields, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 14204-14213.
- A. Lahiri, V. Kwatra, C. Frueh, J. Lewis, and C. Bregler, "LipSync3D: Data-efficient learning of personalized 3D talking faces from video using pose and lighting normalization, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 2754-2763.
- A. Richard, M. Zollhöfer, Y. Wen, F. de la Torre, and Y. Sheikh, "MeshTalk: 3D face animation from speech using cross-modality disentanglement, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 1153-1162.
- B. Thambiraja, I. Habibie, S. Aliakbarian, D. Cosker, C. Theobalt, and J. Thies, "Imitator: Personalized speech-driven 3D facial animation, " in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023, pp. 20621-20631.
- H.Yi, H. Liang, Y. Liu, Q. Cao, Y.Wen, T. Bolkart, D. Tao, and M. J. Black, "Generating holistic 3D human motion from speech, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 469-480.
- C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and T.-Y. Lin, "Magic3D: High-resolution text-To-3D content creation, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 300-309.
- Y.-C. Cheng, H.-Y. Lee, S. Tulyakov, A. Schwing, and L. Gui, "SDFusion: Multimodal 3D shape completion, reconstruction, and generation, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 4456-4465.
- L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, and C. Theobalt, "Neural actor: Neural free-view synthesis of human actors with pose control, " ACM Trans. Graph., vol. 40, no. 6, pp. 1-16, Dec. 2021.
- M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, "SMPL:Askinned multi-person linear model, " ACMTrans. Graph. (Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1-248:16, Oct. 2015.
- N. Otberdout, C. Ferrari, M. Daoudi, S. Berretti, and A. Del Bimbo, "Sparse to dense dynamic 3D facial expression generation, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 20353-20362.
- P. Chandran, D. Bradley, M. Gross, and T. Beeler, "Semantic deep face models, " in Proc. Int. Conf. 3D Vis. (3DV), Nov. 2020, pp. 345-354.
- J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, "Towards a theory of semantic communication, " in Proc. IEEE Netw. Sci. Workshop, Jun. 2011, pp. 110-117.
- W. Li, L. Zhang, D.Wang, B. Zhao, Z.Wang, M. Chen, B. Zhang, Z. Wang, L. Bo, and X. Li, "One-shot high-fidelity talking-head synthesis with deformable neural radiance field, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 32, Jun. 2023, pp. 17969-17978.
Issue
| IEEE Access, vol. 12, pp. 141604-141624, 2024, Albania, https://doi.org/10.1109/ACCESS.2024.3469549 |
Copyright IEEE |