Autors: Vladkova T.G., Smani Y., Martinov B.L., Gospodinova, D. N.
Title: Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications
Keywords: antibacterial compounds, antibacterial products, bacteriocines, biosynthesized nanoparticles, combination treatments, terrestrial biota

Abstract: Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.

References

  1. Ye L. Zhang J. Xiao W. Liu S. Efficacy and Mechanism of Actions of Natural Antimicrobial Drugs Pharmacol. Ther. 2020 216 107671 10.1016/j.pharmthera.2020.107671 32916205
  2. Murray C.J.L. Ikuta K.S. Sharara F. Swetschinski L. Aguilar G.R. Gray A. Han C. Bisignano C. Rao P. Wool E. et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis Lancet 2022 399 629 655 10.1016/S0140-6736(21)02724-0 35065702
  3. van Dongen M. AMR Insights in 2023 in a Bird’s Eye View AMR Insights Amsterdam, The Netherlands 2024 18
  4. World Health Organization 10 Threats to Global Health in 2018 Available online: https://medium.com/who/10-threats-to-global-health-in-2018-232daf0bbef3 (accessed on 12 August 2024)
  5. Health Promotion Board Antimicrobial Resistance Available online: https://hpb.gov.sg/healthy-living/preventive-health/antimicrobial-resistance (accessed on 12 August 2024)
  6. Li W. Separovic F. O’Brien-Simpson N.M. Wade J.D. Chemically Modified and Conjugated Antimicrobial Peptides against Superbugs Chem. Soc. Rev. 2021 50 4932 4973 10.1039/D0CS01026J 33710195
  7. Pulingam T. Parumasivam T. Gazzali A.M. Sulaiman A.M. Chee J.Y. Lakshmanan M. Chin C.F. Sudesh K. Antimicrobial Resistance: Prevalence, Economic Burden, Mechanisms of Resistance and Strategies to Overcome Eur. J. Pharm. Sci. 2022 170 106103 10.1016/j.ejps.2021.106103
  8. Jonas O.B.I.A. Irwin A. Berthe F.C.J. Le Gall F.G. Marquez P.V. Patricio Drug-Resistant Infections: A Threat to Our Economic Future (Vol. 2): Final Report Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/323311493396993758/final-report (accessed on 10 August 2024)
  9. World Health Organization World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals World Health Organization Geneva, Switzerland 2021 136
  10. World Health Organization WHO Bacterial Priority Pathogens List, 2024 Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance World Health Organization Geneva, Switzerland 2024 72
  11. Qadri H. Shah A.H. Mir M. Novel Strategies to Combat the Emerging Drug Resistance in Human Pathogenic Microbes Current Drug Targets 2021 22 1424 1436 10.2174/1389450121666201228123212
  12. Symochko L. Demyanyuk O. Symochko V. Grulova D. Fejer J. Mariychuk R. The Spreading of Antibiotic-Resistant Bacteria in Terrestrial Ecosystems and the Formation of Soil Resistome Land 2023 12 769 10.3390/land12040769
  13. Theuretzbacher U. Bush K. Harbarth S. Paul M. Rex J.H. Tacconelli E. Thwaites G.E. Critical Analysis of Antibacterial Agents in Clinical Development Nat. Rev. Microbiol. 2020 18 286 298 10.1038/s41579-020-0340-0 32152509
  14. Abushaheen M.A. Muzaheed Fatani A.J. Alosaimi M. Mansy W. George M. Acharya S. Rathod S. Divakar D.D. Jhugroo C. et al. Antimicrobial Resistance, Mechanisms and Its Clinical Significance Dis.-A-Mon. 2020 66 100971 10.1016/j.disamonth.2020.100971
  15. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens Pathogens 2021 10 1310 10.3390/pathogens10101310
  16. Uddin T.M. Chakraborty A.J. Khusro A. Zidan B.R.M. Mitra S. Emran T.B. Dhama K. Ripon M.K.H. Gajdács M. Sahibzada M.U.K. et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects J. Infect. Public Health 2021 14 1750 1766 10.1016/j.jiph.2021.10.020
  17. Bösch A. Macha M.E. Ren Q. Kohler P. Qi W. Babouee Flury B. Resistance Development in Escherichia Coli to Delafloxacin at pHs 6.0 and 7.3 Compared to Ciprofloxacin Antimicrob. Agents Chemother. 2023 67 e01625-22 10.1128/aac.01625-22 37882542
  18. Jubeh B. Breijyeh Z. Karaman R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches Molecules 2020 25 2888 10.3390/molecules25122888 32586045
  19. Breijyeh Z. Jubeh B. Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It Molecules 2020 25 1340 32187986 10.3390/molecules25061340
  20. Mir M.A. Aisha S. Qadri H. Jan U. Yousuf A. Jan N. Chapter 2—Evolution of Antimicrobial Drug Resistance in Human Pathogenic Bacteria Human Pathogenic Microbes Mir M.A. Developments in Microbiology Academic Press Cambridge, MA, USA 2022 31 52 978-0-323-96127-1
  21. Helmy Y.A. Taha-Abdelaziz K. Hawwas H.A.E.-H. Ghosh S. AlKafaas S.S. Moawad M.M.M. Saied E.M. Kassem I.I. Mawad A.M.M. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens Antibiotics 2023 12 274 10.3390/antibiotics12020274 36830185
  22. Browne K. Chakraborty S. Chen R. Willcox M.D. Black D.S. Walsh W.R. Kumar N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides Int. J. Mol. Sci. 2020 21 7047 10.3390/ijms21197047
  23. Stan D. Enciu A.-M. Mateescu A.L. Ion A.C. Brezeanu A.C. Stan D. Tanase C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation Front. Pharmacol. 2021 12 723233 10.3389/fphar.2021.723233
  24. Butler M.S. Paterson D.L. Antibiotics in the Clinical Pipeline in October 2019 J. Antibiot. 2020 73 329 364 10.1038/s41429-020-0291-8
  25. Vladkova T.G. Martinov B.L. Gospodinova D.N. Anti-Biofilm Agents from Marine Biota J. Chem. Technol. Metall. 2023 58 825 839 10.59957/jctm.v58i5.117
  26. Vladkova T.G. Monov D.M. Akuzov D.T. Ivanova I.A. Gospodinova D. Comparative Study of the Marinobacter Hydrocarbonoclasticus Biofilm Formation on Antioxidants Containing Siloxane Composite Coatings Materials 2022 15 4530 10.3390/ma15134530
  27. Vladkova T.G. Smani Y. Martinov B.L. Gospodinova D.N. Recent Progress in Terrestrial Biota-Derived Anti-Biofilm Agents for Medical Applications Appl. Microbiol. 2024 4 1362 1383 10.3390/applmicrobiol4030094
  28. Vladkova T. Georgieva N. Staneva A. Gospodinova D. Recent Progress in Antioxidant Active Substances from Marine Biota Antioxidants 2022 11 439 10.3390/antiox11030439 35326090
  29. Vladkova T.G. Staneva A.D. Avramova I.A. Ivanova I.A. Gospodinova D.N. Fucoidan-Containing, Low-Adhesive Siloxane Coatings for Medical Applications: Inhibition of Bacterial Growth and Biofilm Development Materials 2023 16 3651 10.3390/ma16103651 37241277
  30. Vladkova T.G. Martinov B.L. Staneva A.D. Ivanova I.A. Gospodinova D.N. Albu-Kaya M.G. Preparation and Antimicrobial Activity of Fucoidan Containing Collagen/(ZnTiO3/SiO2) Composites J. Chem. Technol. Metall. 2023 58 654 663 10.59957/jctm.v58i4.98
  31. Farha M.A. Brown E.D. Drug Repurposing for Antimicrobial Discovery Nat. Microbiol. 2019 4 565 577 10.1038/s41564-019-0357-1 30833727
  32. Qi M. Chi M. Sun X. Xie X. Weir M.D. Oates T.W. Zhou Y. Wang L. Bai Y. Xu H.H. Novel Nanomaterial-Based Antibacterial Photodynamic Therapies to Combat Oral Bacterial Biofilms and Infectious Diseases Int. J. Nanomed. 2019 14 6937 6956 31695368 10.2147/IJN.S212807
  33. Imran M. Ahmad M.N. Dasgupta A. Rana P. Srinivas N. Chopra S. Novel Approaches for the Treatment of Infections Due to Multidrug-Resistant Bacterial Pathogens Future Med. Chem. 2022 14 1133 1148 35861021 10.4155/fmc-2022-0029
  34. Moo C.-L. Yang S.-K. Yusoff K. Ajat M. Thomas W. Abushelaibi A. Lim S.-H.-E. Lai K.-S. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR Curr. Drug Discov. Technol. 2020 17 430 447 10.2174/1570163816666190304122219
  35. Ayaz M. Ullah F. Sadiq A. Ullah F. Ovais M. Ahmed J. Devkota H.P. Synergistic Interactions of Phytochemicals with Antimicrobial Agents: Potential Strategy to Counteract Drug Resistance Chem.-Biol. Interact. 2019 308 294 303 10.1016/j.cbi.2019.05.050 31158333
  36. Tyers M. Wright G.D. Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century Nat. Rev. Microbiol. 2019 17 141 155 10.1038/s41579-018-0141-x
  37. Zharkova M.S. Orlov D.S. Golubeva O.Y. Chakchir O.B. Eliseev I.E. Grinchuk T.M. Shamova O.V. Application of Antimicrobial Peptides of the Innate Immune System in Combination with Conventional Antibiotics—A Novel Way to Combat Antibiotic Resistance? Front. Cell. Infect. Microbiol. 2019 9 128 10.3389/fcimb.2019.00128
  38. Douafer H. Andrieu V. Phanstiel O.I. Brunel J.M. Antibiotic Adjuvants: Make Antibiotics Great Again! J. Med. Chem. 2019 62 8665 8681 10.1021/acs.jmedchem.8b01781 31063379
  39. Mir M.A. Kumawat M. Nabi B. Kumar M. Chapter 8—Combinatorial Approach to Combat Drug Resistance in Human Pathogenic Bacteria Human Pathogenic Microbes Mir M.A. Developments in Microbiology Academic Press Cambridge, MA, USA 2022 187 206 978-0-323-96127-1
  40. León-Buitimea A. Garza-Cárdenas C.R. Garza-Cervantes J.A. Lerma-Escalera J.A. Morones-Ramírez J.R. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design Front. Microbiol. 2020 11 1669 10.3389/fmicb.2020.01669 32793156
  41. Moammeri A. Chegeni M.M. Sahrayi H. Ghafelehbashi R. Memarzadeh F. Mansouri A. Akbarzadeh I. Abtahi M.S. Hejabi F. Ren Q. Current Advances in Niosomes Applications for Drug Delivery and Cancer Treatment Mater. Today Bio 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
  42. Huan Y. Kong Q. Mou H. Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields Front. Microbiol. 2020 11 582779 10.3389/fmicb.2020.582779
  43. Qadri H. Haseeb Shah A. Mudasir Ahmad S. Alshehri B. Almilaibary A. Ahmad Mir M. Natural Products and Their Semi-Synthetic Derivatives against Antimicrobial-Resistant Human Pathogenic Bacteria and Fungi Saudi J. Biol. Sci. 2022 29 103376 35874656 10.1016/j.sjbs.2022.103376
  44. Arrowsmith C.H. Structure-Guided Drug Discovery: Back to the Future Nat. Struct. Mol. Biol. 2024 31 395 396 10.1038/s41594-024-01244-3 38486110
  45. Süntar I. Importance of Ethnopharmacological Studies in Drug Discovery: Role of Medicinal Plants Phytochem. Rev. 2020 19 1199 1209 10.1007/s11101-019-09629-9
  46. Malekian A. Esmaeeli Djavid G. Akbarzadeh K. Soltandallal M. Rassi Y. Rafinejad J. Rahimi Foroushani A. Farhoud A.R. Bakhtiary R. Totonchi M. Efficacy of Maggot Therapy on Staphylococcus Aureus and Pseudomonas Aeruginosa in Diabetic Foot Ulcers: A Randomized Controlled Trial J. Wound Ostomy Cont. Nurs. 2019 46 25 29 10.1097/WON.0000000000000496
  47. Porras G. Chassagne F. Lyles J.T. Marquez L. Dettweiler M. Salam A.M. Samarakoon T. Shabih S. Farrokhi D.R. Quave C.L. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery Chem. Rev. 2021 121 3495 3560 10.1021/acs.chemrev.0c00922
  48. Wu S.-C. Liu F. Zhu K. Shen J.-Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus Aureus J. Agric. Food Chem. 2019 67 13195 13211 10.1021/acs.jafc.9b05595
  49. Álvarez-Martínez F.J. Barrajón-Catalán E. Herranz-López M. Micol V. Antibacterial Plant Compounds, Extracts and Essential Oils: An Updated Review on Their Effects and Putative Mechanisms of Action Phytomedicine 2021 90 153626 10.1016/j.phymed.2021.153626 34301463
  50. Farhadi F. Khameneh B. Iranshahi M. Iranshahy M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review Phytother. Res. 2019 33 13 40 30346068 10.1002/ptr.6208
  51. Sheikh B.A. Bhat B.A. Ahmad Z. Mir M.A. Strategies Employed to Evade the Host Immune Response and the Mechanism of Drug Resistance in Mycobacterium Tuberculosis: In Search of Finding New Targets Curr. Pharm. Biotechnol. 2022 23 1704 1720 10.2174/1389201023666211222164938 34951359
  52. Mayo-Muñoz D. Pinilla-Redondo R. Camara-Wilpert S. Birkholz N. Fineran P.C. Inhibitors of Bacterial Immune Systems: Discovery, Mechanisms and Applications Nat. Rev. Genet. 2024 25 237 254 10.1038/s41576-023-00676-9 38291236
  53. Vaishampayan A. Grohmann E. Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights Microorganisms 2022 10 61 10.3390/microorganisms10010061
  54. Naqvi S.A.R. Nadeem S. Komal S. Naqvi S.A.A. Mubarik M.S. Qureshi S.Y. Ahmad S. Abbas A. Zahid M. Khan N.-U.-H. et al. Antioxidants: Natural Antibiotics Antioxidants IntechOpen London, UK 2019 978-1-78923-920-1
  55. Durand G.A. Raoult D. Dubourg G. Antibiotic Discovery: History, Methods and Perspectives Int. J. Antimicrob. Agents 2019 53 371 382 10.1016/j.ijantimicag.2018.11.010
  56. Franco C.M. Vázquez B.I. Natural Compounds as Antimicrobial Agents Antibiotics 2020 9 217 10.3390/antibiotics9050217 32365458
  57. Miethke M. Pieroni M. Weber T. Brönstrup M. Hammann P. Halby L. Arimondo P.B. Glaser P. Aigle B. Bode H.B. et al. Towards the Sustainable Discovery and Development of New Antibiotics Nat Rev Chem 2021 5 726 749 10.1038/s41570-021-00313-1
  58. Elmaidomy A.H. Shady N.H. Abdeljawad K.M. Elzamkan M.B. Helmy H.H. Tarshan E.A. Adly A.N. Hussien Y.H. Sayed N.G. Zayed A. et al. Antimicrobial Potentials of Natural Products against Multidrug Resistance Pathogens: A Comprehensive Review RSC Adv. 2022 12 29078 29102 10.1039/D2RA04884A
  59. Mir M.A. Usman M. Qadri H. Aisha S. Chapter 10—Recent Trends in the Development of Bacterial and Fungal Vaccines Human Pathogenic Microbes Mir M.A. Developments in Microbiology Academic Press Cambridge, MA, USA 2022 233 259 978-0-323-96127-1
  60. Jabborova D. Davranov K. Egamberdieva D. Antibacterial, Antifungal, and Antiviral Properties of Medical Plants Medically Important Plant Biomes: Source of Secondary Metabolites Egamberdieva D. Tiezzi A. Springer Singapore 2019 51 65 9789811395666
  61. Parham S. Kharazi A.Z. Bakhsheshi-Rad H.R. Nur H. Ismail A.F. Sharif S. RamaKrishna S. Berto F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials Antioxidants 2020 9 1309 10.3390/antiox9121309
  62. Goodhealth Herbal Antimicrobials: Fighting Infections Naturally Available online: https://goodhealth.co.nz/herbal-antibiotics-fighting-infections-naturally-2/ (accessed on 10 August 2024)
  63. Gong C. What Is the Most Effective Natural Antibiotic for Tooth Infections Available online: https://europe.oclean.com/blogs/tips/what-is-the-strongest-natural-antibiotic-for-tooth-infection (accessed on 10 August 2024)
  64. Adamczak A. Ożarowski M. Karpiński T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity Pharmaceuticals 2020 13 153 10.3390/ph13070153 32708619
  65. Zheng D. Huang C. Huang H. Zhao Y. Khan M.R.U. Zhao H. Huang L. Antibacterial Mechanism of Curcumin: A Review Chem. Biodivers. 2020 17 e2000171 10.1002/cbdv.202000171 32533635
  66. Khaleghian M. Sahrayi H. Hafezi Y. Mirshafeeyan M. Moghaddam Z.S. Farasati Far B. Noorbazargan H. Mirzaie A. Ren Q. In Silico Design and Mechanistic Study of Niosome-Encapsulated Curcumin against Multidrug-Resistant Staphylococcus Aureus Biofilms Front. Microbiol. 2023 14 e1277533 10.3389/fmicb.2023.1277533 38098658
  67. Khameneh B. Iranshahy M. Soheili V. Fazly Bazzaz B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint Antimicrob. Resist. Infect. Control 2019 8 118 10.1186/s13756-019-0559-6 31346459
  68. Gorlenko C.L. Kiselev H.Y. Budanova E.V. Zamyatnin A.A. Ikryannikova L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020 9 170 10.3390/antibiotics9040170 32290036
  69. El-Ashmawy I.M. Aljohani A.S.M. Soliman A.S. Studying the Bioactive Components and Phytochemicals of the Methanol Extract of Rhanterium Epapposum Oliv Appl. Biochem. Biotechnol. 2024 196 2414 2424 10.1007/s12010-023-04574-y
  70. Manandhar S. Luitel S. Dahal R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria J. Trop. Med. 2019 2019 1895340 10.1155/2019/1895340
  71. Zofou D. Shu G.L. Foba-Tendo J. Tabouguia M.O. Assob J.-C.N. In Vitro and In Vivo Anti-Salmonella Evaluation of Pectin Extracts and Hydrolysates from “Cas Mango” (Spondias Dulcis) Evid.-Based Complement. Altern. Med. 2019 2019 3578402 10.1155/2019/3578402
  72. Rasooly R. Molnar A. Choi H.-Y. Do P. Racicot K. Apostolidis E. In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts Antibiotics 2019 8 244 10.3390/antibiotics8040244
  73. Portillo-Torres L.A. Bernardino-Nicanor A. Gómez-Aldapa C.A. González-Montiel S. Rangel-Vargas E. Villagómez-Ibarra J.R. González-Cruz L. Cortés-López H. Castro-Rosas J. Hibiscus Acid and Chromatographic Fractions from Hibiscus Sabdariffa Calyces: Antimicrobial Activity against Multidrug-Resistant Pathogenic Bacteria Antibiotics 2019 8 218 10.3390/antibiotics8040218
  74. Faujdar S.S. Bisht D. Sharma A. Antibacterial Potential of Neem (Azadirachta Indica) against Uropathogens Producing Beta-Lactamase Enzymes: A Clue to Future Antibacterial Agent? Biomed. Biotechnol. Res. J. (BBRJ) 2020 4 232 238 10.4103/bbrj.bbrj_38_20
  75. Kaczorová D. Karalija E. Dahija S. Bešta-Gajević R. Parić A. Ćavar Zeljković S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species Molecules 2021 26 1601 10.3390/molecules26061601 33805815
  76. Tajudin N.J. Ismail I.N.A. Antimicrobial Activity of Kalanchoe Pinnata: A Review Malays. J. Sci. Health Technol. 2022 8 31 37 10.33102/mjosht.v8i1.245
  77. Hassan M. Musa F.M. Aliyu F. Adamu A. Antibacterial Activity of Ethanol Leaf Extract of Sida Acuta Against Some Clinical Bacterial Isolates Int. J. Life Sci. Biotechnol. 2022 5 572 580 10.38001/ijlsb.1115771
  78. Nasution A.K. Wijaya S.H. Gao P. Islam R.M. Huang M. Ono N. Kanaya S. Altaf-Ul-Amin M. Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier Antibiotics 2022 11 1199 10.3390/antibiotics11091199 36139978
  79. Pereira A.G. Silva A. Grosso C. Echave J. Chamorro F. Seyyedi-Mansour S. Donn P. Fraga-Corral M. Barroso M.F. Prieto M.A. Antimicrobial Activity Screening of Camellia Japonica Flowers (Var. Carolyn Tuttle) for Potential Drug Development Eng. Proc. 2023 56 314 10.3390/ASEC2023-15909
  80. Kavaz D. Faraj R.E. Investigation of Composition, Antioxidant, Antimicrobial and Cytotoxic Characteristics from Juniperus Sabina and Ferula Communis Extracts Sci. Rep. 2023 13 7193 10.1038/s41598-023-34281-x
  81. El Mannoubi I. Impact of Different Solvents on Extraction Yield, Phenolic Composition, in Vitro Antioxidant and Antibacterial Activities of Deseeded Opuntia Stricta Fruit J. Umm Al-Qura Univ. Appl. Sci. 2023 9 176 184 10.1007/s43994-023-00031-y
  82. Soltanian S. Sheikhbahaei M. Mirtadzadini M. Kalantari Khandani B. Evaluation of Anticancer, Antioxidant and Antibacterial Properties of Methanol Extract of Three Acantholimon Boiss. Species Avicenna J. Phytomed. 2020 10 641 652
  83. Senhaji S. Lamchouri F. Toufik H. Phytochemical Content, Antibacterial and Antioxidant Potential of Endemic Plant Anabasis Aretioïdes Coss. & Moq. (Chenopodiaceae) BioMed Res. Int. 2020 2020 6152932 10.1155/2020/6152932
  84. Özcan K. Antibacterial, Antioxidant and Enzyme Inhibition Activity Capacities of Doronicum Macrolepis (FREYN&SINT): An Endemic Plant from Turkey Saudi Pharm. J. 2020 28 95 100 10.1016/j.jsps.2019.11.010 31920435
  85. Wang L. Zhao X. Yang F. Wu W. Liu Y. Wang L. Wang L. Wang Z. Enhanced Bioaccessibility in Vitro and Bioavailability of Ginkgo Biloba Extract Nanoparticles Prepared by Liquid Anti-Solvent Precipitation Int. J. Food Sci. Technol. 2019 54 2266 2276 10.1111/ijfs.14141
  86. Tariq S. Wani S. Rasool W. Shafi K. Bhat M.A. Prabhakar A. Shalla A.H. Rather M.A. A Comprehensive Review of the Antibacterial, Antifungal and Antiviral Potential of Essential Oils and Their Chemical Constituents against Drug-Resistant Microbial Pathogens Microb. Pathog. 2019 134 103580 10.1016/j.micpath.2019.103580 31195112
  87. Wińska K. Mączka W. Łyczko J. Grabarczyk M. Czubaszek A. Szumny A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019 24 2130 10.3390/molecules24112130
  88. Mahizan N.A. Yang S.-K. Moo C.-L. Song A.A.-L. Chong C.-M. Chong C.-W. Abushelaibi A. Lim S.-H.E. Lai K.-S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens Molecules 2019 24 2631 10.3390/molecules24142631 31330955
  89. Abdallah E.M. Alhatlani B.Y. de Paula Menezes R. Martins C.H.G. Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era Plants 2023 12 3077 10.3390/plants12173077
  90. Hovorková P. Laloučková K. Skřivanová E. Determination of in Vitro Antibacterial Activity of Plant Oils Containing Medium-Chain Fatty Acids against Gram-Positive Pathogenic and Gut Commensal Bacteria Czech J. Anim. Sci. 2018 63 119 125 10.17221/70/2017-CJAS
  91. Riski D.G. Maulana R.G.R. Permana E. Lestari I. Tarigan I.L. Profile Analysis of Fatty Acids of Tengkawang (Shorea Sumatrana) Oil Using GC-MS and Antibacterial Activity Indones. J. Chem. Res. 2020 8 114 119 10.30598/ijcr.2020.8-dgr
  92. Casillas-Vargas G. Ocasio-Malavé C. Medina S. Morales-Guzmán C. Del Valle R.G. Carballeira N.M. Sanabria-Ríos D.J. Antibacterial Fatty Acids: An Update of Possible Mechanisms of Action and Implications in the Development of the next-Generation of Antibacterial Agents Prog. Lipid Res. 2021 82 101093 10.1016/j.plipres.2021.101093
  93. Kannan N. Rao A.S. Nair A. Microbial Production of Omega-3 Fatty Acids: An Overview J. Appl. Microbiol. 2021 131 2114 2130 10.1111/jam.15034
  94. Sidders A.E. Kedziora K.M. Arts M. Daniel J.-M. de Benedetti S. Beam J.E. Bui D.T. Parsons J.B. Schneider T. Rowe S.E. et al. Antibiotic-Induced Accumulation of Lipid II Synergizes with Antimicrobial Fatty Acids to Eradicate Bacterial Populations eLife 2023 12 e80246 10.7554/eLife.80246 36876902
  95. Almuhayawi M.S. Propolis as a Novel Antibacterial Agent Saudi J. Biol. Sci. 2020 27 3079 3086 10.1016/j.sjbs.2020.09.016 33100868
  96. Mandal M.D. Mandal S. Honey: Its Medicinal Property and Antibacterial Activity Asian Pac. J. Trop. Biomed. 2011 1 154 160 10.1016/S2221-1691(11)60016-6 23569748
  97. Albaridi N.A. Antibacterial Potency of Honey Int. J. Microbiol. 2019 2019 2464507 10.1155/2019/2464507 31281362
  98. Almasaudi S. The Antibacterial Activities of Honey Saudi J. Biol. Sci. 2021 28 2188 2196 10.1016/j.sjbs.2020.10.017
  99. Zakir-Hussain M. Scientists Turn to Honey in Their Urgent Search for Alternative Antibiotics Available online: https://www.aol.com/scientists-turn-honey-urgent-search-103812541.html (accessed on 10 August 2024)
  100. Ware I. Franke K. Frolov A. Bureiko K. Kysil E. Yahayu M. El Enshasy H.A. Wessjohann L.A. Comparative Metabolite Analysis of Piper Sarmentosum Organs Approached by LC–MS-Based Metabolic Profiling Nat. Prod. Bioprospect. 2024 14 30 10.1007/s13659-024-00453-z
  101. Mickymaray S. Efficacy and Mechanism of Traditional Medicinal Plants and Bioactive Compounds against Clinically Important Pathogens Antibiotics 2019 8 257 10.3390/antibiotics8040257
  102. Gioia S.D. Hossain M.N. Conese M. Biological Properties and Therapeutic Effects of Plant-Derived Nanovesicles Open Med. 2020 15 1096 1122 10.1515/med-2020-0160
  103. Vestergaard M. Ingmer H. Antibacterial and Antifungal Properties of Resveratrol Int. J. Antimicrob. Agents 2019 53 716 723 10.1016/j.ijantimicag.2019.02.015
  104. Lyu J.I. Ryu J. Jin C.H. Kim D.-G. Kim J.M. Seo K.-S. Kim J.-B. Kim S.H. Ahn J.-W. Kang S.-Y. et al. Phenolic Compounds in Extracts of Hibiscus Acetosella (Cranberry Hibiscus) and Their Antioxidant and Antibacterial Properties Molecules 2020 25 4190 10.3390/molecules25184190
  105. Yang Y. Wu J. Li Q. Wang J. Mu L. Hui L. Li M. Xu W. Yang H. Wei L. A Non-Bactericidal Cathelicidin Provides Prophylactic Efficacy against Bacterial Infection by Driving Phagocyte Influx eLife 2022 11 e72849 10.7554/eLife.72849 35195067
  106. Zhang Y. Cai P. Cheng G. Zhang Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity Nat. Prod. Commun. 2022 17 1 14 10.1177/1934578X211069721
  107. Wang S. Fan L. Pan H. Li Y. Zhao X. Qiu Y. Lu Y. Identification and Characterization of a Novel Cathelicidin from Hydrophis Cyanocinctus with Antimicrobial and Anti-Inflammatory Activity Molecules 2023 28 2082 10.3390/molecules28052082 36903328
  108. Shi L. Zhao W. Yang Z. Subbiah V. Suleria H.A.R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities Environ. Sci. Pollut. Res. 2022 29 81112 81129 10.1007/s11356-022-23337-6
  109. Flavonoid Wikipedia 2024 Available online: https://en.wikipedia.org/wiki/Flavonoid (accessed on 12 June 2023)
  110. Harvard Health Publishing the Thinking on Flavonoids Available online: https://www.health.harvard.edu/mind-and-mood/the-thinking-on-flavonoids (accessed on 10 August 2024)
  111. Kozłowska A. Szostak-Węgierek D. Flavonoids—Food Sources, Health Benefits, and Mechanisms Involved Bioactive Molecules in Food Mérillon J.-M. Ramawat K.G. Springer International Publishing Cham, Switzerland 2019 53 78 978-3-319-78030-6
  112. Mutha R.E. Tatiya A.U. Surana S.J. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview Future J. Pharm. Sci. 2021 7 25 10.1186/s43094-020-00161-8
  113. Doyle A.A. Stephens J.C. A Review of Cinnamaldehyde and Its Derivatives as Antibacterial Agents Fitoterapia 2019 139 104405 10.1016/j.fitote.2019.104405
  114. Xu M. Wu P. Shen F. Ji J. Rakesh K.P. Chalcone Derivatives and Their Antibacterial Activities: Current Development Bioorg. Chem. 2019 91 103133 10.1016/j.bioorg.2019.103133
  115. Dan W. Dai J. Recent Developments of Chalcones as Potential Antibacterial Agents in Medicinal Chemistry Eur. J. Med. Chem. 2020 187 111980 10.1016/j.ejmech.2019.111980
  116. Skarpalezos D. Detsi A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources Appl. Sci. 2019 9 4169 10.3390/app9194169
  117. Rodríguez De Luna S.L. Ramírez-Garza R.E. Serna Saldívar S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties Sci. World J. 2020 2020 6792069 10.1155/2020/6792069
  118. Chaves J.O. de Souza M.C. da Silva L.C. Lachos-Perez D. Torres-Mayanga P.C. Machado A.P.d.F. Forster-Carneiro T. Vázquez-Espinosa M. González-de-Peredo A.V. Barbero G.F. et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques Front. Chem. 2020 8 507887 10.3389/fchem.2020.507887 33102442
  119. Jurinjak Tušek A. Šamec D. Šalić A. Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Appl. Sci. 2022 12 11865 10.3390/app122211865
  120. Xu J. Wu J. Qi J. Li J. Liu Y. Miao Z. Qiu G. Jia W. Microwave-Assisted Extraction of Flavonoids from Phyllostachys Heterocycla Leaves: Optimization, Mechanism, and Antioxidant Activity in Vitro BioResources 2021 16 8060 8081 10.15376/biores.16.4.8060-8081
  121. Liu X. Liu Y. Shan C. Yang X. Zhang Q. Xu N. Xu L. Song W. Effects of Five Extraction Methods on Total Content, Composition, and Stability of Flavonoids in Jujube Food Chem. X 2022 14 100287 10.1016/j.fochx.2022.100287
  122. Vittaya L. Charoendat U. Ui-eng J. Leesakul N. Effect of Extraction Solvents on Phenolic Compounds and Flavonoids from Pongame oiltree (Derris Indica [Lamk.] Bennet) Aerial Parts and Their Growth Inhibition of Aquatic Pathogenic Bacteria Agric. Nat. Resour. 2022 56 569 582
  123. Simangunsong S.N. Lenny S. Marpaung L. Isolation of Flavonoids Compounds from Akalifa (Acalypha wilkesiana Muell. Arc.) Plant Leaves J. Chem. Nat. Resour. 2023 5 40 45 10.32734/jcnar.v5i1.11990
  124. Bribi N. Pharmacological Activity of Alkaloids: A Review Asian J. Bot. 2018 1 1 6 10.63019/ajb.v1i2.467
  125. Lin C.-J. Chang Y.-L. Yang Y.-L. Chen Y.-L. Natural Alkaloid Tryptanthrin Exhibits Novel Anticryptococcal Activity Med. Mycol. 2021 59 545 556 10.1093/mmy/myaa074
  126. Liu M. Han J. Feng Y. Guymer G. Forster P.I. Quinn R.J. Antimicrobial Benzyltetrahydroisoquinoline-Derived Alkaloids from the Leaves of Doryphora Aromatica J. Nat. Prod. 2021 84 676 682 10.1021/acs.jnatprod.0c01093
  127. Biva I.J. Ndi C.P. Semple S.J. Griesser H.J. Antibacterial Performance of Terpenoids from the Australian Plant Eremophila Lucida Antibiotics 2019 8 63 10.3390/antibiotics8020063
  128. Zhu C.-Z. Hu B.-Y. Liu J.-W. Cai Y. Chen X.-C. Qin D.-P. Cheng Y.-X. Zhang Z.-D. Anti-Mycobacterium Tuberculosis Terpenoids from Resina Commiphora Molecules 2019 24 1475 30991677 10.3390/molecules24081475
  129. Hossain S. Urbi Z. Karuniawati H. Mohiuddin R.B. Moh Qrimida A. Allzrag A.M.M. Ming L.C. Pagano E. Capasso R. Andrographis Paniculata (Burm. f.) Wall. Ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy Life 2021 11 348 10.3390/life11040348 33923529
  130. Pech-Puch D. Forero A.M. Fuentes-Monteverde J.C. Lasarte-Monterrubio C. Martinez-Guitian M. González-Salas C. Guillén-Hernández S. Villegas-Hernández H. Beceiro A. Griesinger C. et al. Antimicrobial Diterpene Alkaloids from an Agelas Citrina Sponge Collected in the Yucatán Peninsula Mar. Drugs 2022 20 298 10.3390/md20050298 35621949
  131. Miyakoshi M. Tamura Y. Masuda H. Mizutani K. Tanaka O. Ikeda T. Ohtani K. Kasai R. Yamasaki K. Antiyeast Steroidal Saponins from Yucca Schidigera (Mohave Yucca), a New Anti-Food-Deteriorating Agent J. Nat. Prod. 2000 63 332 338 10.1021/np9904354
  132. Hussein R.A. El-Anssary A.A. Hussein R.A. El-Anssary A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants Herbal Medicine IntechOpen London, UK 2018 978-1-78984-783-3
  133. Dev Kumar G. Mis Solval K. Mishra A. Macarisin D. Antimicrobial Efficacy of Pelargonic Acid Micelles against Salmonella Varies by Surfactant, Serotype and Stress Response Sci. Rep. 2020 10 10287 10.1038/s41598-020-67223-y
  134. Pacyga K. Pacyga P. Topola E. Viscardi S. Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections Int. J. Mol. Sci. 2024 25 2100 10.3390/ijms25042100
  135. Thapa S.S. Grove A. Do Global Regulators Hold the Key to Production of Bacterial Secondary Metabolites? Antibiotics 2019 8 160 10.3390/antibiotics8040160 31547528
  136. Mahmood N. Nazir R. Khan M. Khaliq A. Adnan M. Ullah M. Yang H. Antibacterial Activities, Phytochemical Screening and Metal Analysis of Medicinal Plants: Traditional Recipes Used against Diarrhea Antibiotics 2019 8 194 10.3390/antibiotics8040194 31653014
  137. Asif F. Zaman S.U. Arnab M.K.H. Hasan M. Islam M.M. Antimicrobial Peptides as Therapeutics: Confronting Delivery Challenges to Optimize Efficacy Microbe 2024 2 100051 10.1016/j.microb.2024.100051
  138. Koehbach J. Craik D.J. The Vast Structural Diversity of Antimicrobial Peptides Trends Pharmacol. Sci. 2019 40 517 528 10.1016/j.tips.2019.04.012
  139. Bin Hafeez A. Jiang X. Bergen P.J. Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases Int. J. Mol. Sci. 2021 22 11691 10.3390/ijms222111691 34769122
  140. Chung C.-R. Liou J.-T. Wu L.-C. Horng J.-T. Lee T.-Y. Multi-Label Classification and Features Investigation of Antimicrobial Peptides with Various Functional Classes iScience 2023 26 108250 10.1016/j.isci.2023.108250 38025779
  141. Sharma H. Dave V. Tyagi E. Prakash A. Antimicrobial Peptides: A Novel and Natural Approach as Antibiofouling Mediator Biologia 2024 79 2515 2533 10.1007/s11756-024-01703-8
  142. Mwangi J. Hao X. Lai R. Zhang Z.-Y. Antimicrobial Peptides: New Hope in the War against Multidrug Resistance Zool. Res. 2019 40 488 505 10.24272/j.issn.2095-8137.2019.062
  143. Xuan J. Feng W. Wang J. Wang R. Zhang B. Bo L. Chen Z.-S. Yang H. Sun L. Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections Drug Resist. Updates 2023 68 100954 10.1016/j.drup.2023.100954
  144. Lai S. Zhang Q. Jin L. Natural and Man-Made Cyclic Peptide-Based Antibiotics Antibiotics 2023 12 42 10.3390/antibiotics12010042
  145. Bakare O.O. Gokul A. Niekerk L.-A. Aina O. Abiona A. Barker A.M. Basson G. Nkomo M. Otomo L. Keyster M. et al. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides Int. J. Mol. Sci. 2023 24 11864 10.3390/ijms241411864
  146. Lei J. Sun L. Huang S. Zhu C. Li P. He J. Mackey V. Coy D.H. He Q. The Antimicrobial Peptides and Their Potential Clinical Applications Am. J. Transl. Res. 2019 11 3919 3931 31396309
  147. Chen C.H. Lu T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications Antibiotics 2020 9 24 10.3390/antibiotics9010024
  148. van der Does A.M. Hiemstra P.S. Mookherjee N. Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects Antimicrobial Peptides: Basics for Clinical Application Matsuzaki K. Springer Singapore 2019 149 171 9789811335884
  149. Raheem N. Straus S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions Front. Microbiol. 2019 10 2866 10.3389/fmicb.2019.02866
  150. Mahlapuu M. Björn C. Ekblom J. Antimicrobial Peptides as Therapeutic Agents: Opportunities and Challenges Crit. Rev. Biotechnol. 2020 40 978 992 10.1080/07388551.2020.1796576 32781848
  151. Magana M. Pushpanathan M. Santos A.L. Leanse L. Fernandez M. Ioannidis A. Giulianotti M.A. Apidianakis Y. Bradfute S. Ferguson A.L. et al. The Value of Antimicrobial Peptides in the Age of Resistance Lancet Infect. Dis. 2020 20 e216 e230 10.1016/S1473-3099(20)30327-3 32653070
  152. Uddin S.J. Shilpi J.A. Nahar L. Sarker S.D. Göransson U. Editorial: Natural Antimicrobial Peptides: Hope for New Antibiotic Lead Molecules Front. Pharmacol. 2021 12 640938 10.3389/fphar.2021.640938
  153. Phazang P. Negi N.P. Raina M. Kumar D. Plant Antimicrobial Peptides: Next-Generation Bioactive Molecules for Plant Protection Phyto-Microbiome in Stress Regulation Kumar M. Kumar V. Prasad R. Springer Singapore 2020 281 293 9789811525766
  154. Zhou X. Zhang J. Shen J. Cheng B. Bi C. Ma Q. Branched-Chain Amino Acid Modulation of Lipid Metabolism, Gluconeogenesis, and Inflammation in a Finishing Pig Model: Targeting Leucine and Valine Food Funct. 2023 14 10119 10134 37882496 10.1039/D3FO03899H
  155. Zou F. Tan C. Shinali T.S. Zhang B. Zhang L. Han Z. Shang N. Plant Antimicrobial Peptides: A Comprehensive Review of Their Classification, Production, Mode of Action, Functions, Applications, and Challenges Food Funct. 2023 14 5492 5515 10.1039/D3FO01119D 37278147
  156. Bakare O.O. Gokul A. Fadaka A.O. Wu R. Niekerk L.-A. Barker A.M. Keyster M. Klein A. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges Molecules 2022 27 3703 10.3390/molecules27123703
  157. Li J. Hu S. Jian W. Xie C. Yang X. Plant Antimicrobial Peptides: Structures, Functions, and Applications Bot. Stud. 2021 62 5 10.1186/s40529-021-00312-x
  158. Barashkova A.S. Rogozhin E.A. Isolation of Antimicrobial Peptides from Different Plant Sources: Does a General Extraction Method Exist? Plant Methods 2020 16 143 10.1186/s13007-020-00687-1
  159. Ben Brahim R. Ellouzi H. Fouzai K. Asses N. Neffati M. Sabatier J.M. Bulet P. Regaya I. Optimized Chemical Extraction Methods of Antimicrobial Peptides from Roots and Leaves of Extremophilic Plants: Anthyllis Sericea and Astragalus Armatus Collected from the Tunisian Desert Antibiotics 2022 11 1302 10.3390/antibiotics11101302
  160. Lima A.M. Azevedo M.I.G. Sousa L.M. Oliveira N.S. Andrade C.R. Freitas C.D.T. Souza P.F.N. Plant Antimicrobial Peptides: An Overview about Classification, Toxicity and Clinical Applications Int. J. Biol. Macromol. 2022 214 10 21 10.1016/j.ijbiomac.2022.06.043
  161. Höng K. Austerlitz T. Bohlmann T. Bohlmann H. The Thionin Family of Antimicrobial Peptides PLoS ONE 2021 16 e0254549 10.1371/journal.pone.0254549 34260649
  162. Chen K. Yin Y. Liu S. Guo Z. Zhang K. Liang Y. Zhang L. Zhao W. Chao H. Li M. Genome-Wide Identification and Functional Analysis of Oleosin Genes in Brassica napus L. BMC Plant Biol. 2019 19 294 10.1186/s12870-019-1891-y 31272381
  163. Rahman M. Guo Q. Baten A. Mauleon R. Khatun A. Liu L. Barkla B.J. Shotgun Proteomics of Brassica rapa Seed Proteins Identifies Vicilin as a Major Seed Storage Protein in the Mature Seed PLoS ONE 2021 16 e0253384 10.1371/journal.pone.0253384 34242257
  164. Afroz M. Akter S. Ahmed A. Rouf R. Shilpi J.A. Tiralongo E. Sarker S.D. Göransson U. Uddin S.J. Ethnobotany and Antimicrobial Peptides from Plants of the Solanaceae Family: An Update and Future Prospects Front. Pharmacol. 2020 11 565 10.3389/fphar.2020.00565 32477108
  165. Mukherjee P.K. Kar A. Biswas S. Chaudhary S.K. Banerjee S. Chapter 37—Hyphenated Analytical Techniques for Validation of Herbal Medicine Evidence-Based Validation of Herbal Medicine 2nd ed. Mukherjee P.K. Elsevier Amsterdam, The Netherlands 2022 811 827 978-0-323-85542-6
  166. Parthasarathy A. Borrego E.J. Savka M.A. Dobson R.C.J. Hudson A.O. Amino Acid–Derived Defense Metabolites from Plants: A Potential Source to Facilitate Novel Antimicrobial Development J. Biol. Chem. 2021 296 100438 10.1016/j.jbc.2021.100438
  167. Slezina M.P. Odintsova T.I. Plant Antimicrobial Peptides: Insights into Structure-Function Relationships for Practical Applications Curr. Issues Mol. Biol. 2023 45 3674 3704 10.3390/cimb45040239
  168. Moyer T.B. Allen J.L. Shaw L.N. Hicks L.M. Multiple Classes of Antimicrobial Peptides in Amaranthus Tricolor Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization J. Nat. Prod. 2021 84 444 452 10.1021/acs.jnatprod.0c01203
  169. Jaiswal M. Singh A. Kumar S. PTPAMP: Prediction Tool for Plant-Derived Antimicrobial Peptides Amino Acids 2023 55 1 17 10.1007/s00726-022-03190-0
  170. Nazarian-Firouzabadi F. Torres M.D.T. de la Fuente-Nunez C. Recombinant Production of Antimicrobial Peptides in Plants Biotechnol. Adv. 2024 71 108296 10.1016/j.biotechadv.2023.108296
  171. Mojsoska B. Jenssen H. Peptides and Peptidomimetics for Antimicrobial Drug Design Pharmaceuticals 2015 8 366 415 10.3390/ph8030366
  172. de Barros E. Gonçalves R.M. Cardoso M.H. Santos N.C. Franco O.L. Cândido E.S. Snake Venom Cathelicidins as Natural Antimicrobial Peptides Front. Pharmacol. 2019 10 1415 10.3389/fphar.2019.01415 31849667
  173. Shi Y. Li C. Wang M. Chen Z. Luo Y. Xia X. Song Y. Sun Y. Zhang A.-M. Cathelicidin-DM Is an Antimicrobial Peptide from Duttaphrynus Melanostictus and Has Wound-Healing Therapeutic Potential ACS Omega 2020 5 9301 9310 10.1021/acsomega.0c00189 32363280
  174. Scheenstra M.R. van Harten R.M. Veldhuizen E.J.A. Haagsman H.P. Coorens M. Cathelicidins Modulate TLR-Activation and Inflammation Front. Immunol. 2020 11 1137 10.3389/fimmu.2020.01137 32582207
  175. Klubthawee N. Adisakwattana P. Hanpithakpong W. Somsri S. Aunpad R. A Novel, Rationally Designed, Hybrid Antimicrobial Peptide, Inspired by Cathelicidin and Aurein, Exhibits Membrane-Active Mechanisms against Pseudomonas Aeruginosa Sci. Rep. 2020 10 9117 32499514 10.1038/s41598-020-65688-5
  176. Jiang M. Chen R. Zhang J. Chen F. Wang K.-J. A Novel Antimicrobial Peptide Spampcin56–86 from Scylla Paramamosain Exerting Rapid Bactericidal and Anti-Biofilm Activity In Vitro and Anti-Infection In Vivo Int. J. Mol. Sci. 2022 23 13316 10.3390/ijms232113316
  177. Galal-Khallaf A. Samir Aboali E. El-Sayed Hassab El-Nabi S. El-Tantawy A.I. Schott E.J. Mohammed-Geba K. As Healthy as Invasive: Charybdis Natator Shell Extract Reveals Beneficial Metabolites with Promising Antioxidant and Anti-Inflammatory Potentials Front. Mar. Sci. 2024 11 1376768 10.3389/fmars.2024.1376768
  178. Lee B. Shin M.K. Yoo J.S. Jang W. Sung J.-S. Identifying Novel Antimicrobial Peptides from Venom Gland of Spider Pardosa Astrigera by Deep Multi-Task Learning Front. Microbiol. 2022 13 971503 10.3389/fmicb.2022.971503
  179. Elliott A.G. Huang J.X. Neve S. Zuegg J. Edwards I.A. Cain A.K. Boinett C.J. Barquist L. Lundberg C.V. Steen J. et al. An Amphipathic Peptide with Antibiotic Activity against Multidrug-Resistant Gram-Negative Bacteria Nat. Commun. 2020 11 3184 10.1038/s41467-020-16950-x
  180. Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. influenzae Br. J. Exp. Pathol. 1929 10 226 236 10.1093/clinids/2.1.129
  181. Tan S. Tatsumura Y. Alexander Fleming (1881–1955): Discoverer of Penicillin Singap. Med. J. 2015 56 366 367 10.11622/smedj.2015105
  182. Pham J.V. Yilma M.A. Feliz A. Majid M.T. Maffetone N. Walker J.R. Kim E. Cho H.J. Reynolds J.M. Song M.C. et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics Front. Microbiol. 2019 10 1404 10.3389/fmicb.2019.01404 31281299
  183. Moradali M.F. Rehm B.H.A. Bacterial Biopolymers: From Pathogenesis to Advanced Materials Nat. Rev. Microbiol. 2020 18 195 210 10.1038/s41579-019-0313-3 31992873
  184. Pérez-Ramos A. Madi-Moussa D. Coucheney F. Drider D. Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins Microorganisms 2021 9 2107 34683428 10.3390/microorganisms9102107
  185. Romero-Calle D. Guimarães Benevides R. Góes-Neto A. Billington C. Bacteriophages as Alternatives to Antibiotics in Clinical Care Antibiotics 2019 8 138 10.3390/antibiotics8030138 31487893
  186. Plumet L. Ahmad-Mansour N. Dunyach-Remy C. Kissa K. Sotto A. Lavigne J.-P. Costechareyre D. Molle V. Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials Front. Cell. Infect. Microbiol. 2022 12 907314 10.3389/fcimb.2022.907314 35782148
  187. Barron M. Phage Therapy: Past, Present and Future Available online: https://asm.org:443/Articles/2022/August/Phage-Therapy-Past,-Present-and-Future (accessed on 10 August 2024)
  188. Parkinson J. What’s Old Is New: Bacteriophage Is a Therapy That May Combat Antimicrobial Resistance Available online: https://www.contagionlive.com/view/what-s-old-is-new-bacteriophage-is-a-therapy-that-may-combat-antimicrobial-resistance (accessed on 10 August 2024)
  189. Ji Y. Cheng M. Zhai S. Xi H. Cai R. Wang Z. Zhang H. Wang X. Xue Y. Li X. et al. Preventive Effect of the Phage VB-SavM-JYL01 on Rabbit Necrotizing Pneumonia Caused by Staphylococcus aureus Vet. Microbiol. 2019 229 72 80 10.1016/j.vetmic.2018.12.021
  190. Barylski J. Enault F. Dutilh B.E. Schuller M.B. Edwards R.A. Gillis A. Klumpp J. Knezevic P. Krupovic M. Kuhn J.H. et al. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages Syst. Biol. 2020 69 110 123 10.1093/sysbio/syz036
  191. Głowacka-Rutkowska A. Ulatowska M. Empel J. Kowalczyk M. Boreczek J. Łobocka M. A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme Viruses 2020 12 292 10.3390/v12030292
  192. Göller P.C. Elsener T. Lorgé D. Radulovic N. Bernardi V. Naumann A. Amri N. Khatchatourova E. Coutinho F.H. Loessner M.J. et al. Multi-Species Host Range of Staphylococcal Phages Isolated from Wastewater Nat. Commun. 2021 12 6965 10.1038/s41467-021-27037-6
  193. Łubowska N. Grygorcewicz B. Kosznik-Kwaśnicka K. Zauszkiewicz-Pawlak A. Węgrzyn A. Dołęgowska B. Piechowicz L. Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus Aureus Microorganisms 2019 7 471 10.3390/microorganisms7100471
  194. Oduor J.M.O. Kadija E. Nyachieo A. Mureithi M.W. Skurnik M. Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential Viruses 2020 12 133 10.3390/v12020133 31979276
  195. Kifelew L.G. Warner M.S. Morales S. Vaughan L. Woodman R. Fitridge R. Mitchell J.G. Speck P. Efficacy of Phage Cocktail AB-SA01 Therapy in Diabetic Mouse Wound Infections Caused by Multidrug-Resistant Staphylococcus Aureus BMC Microbiol. 2020 20 204 10.1186/s12866-020-01891-8 32646376
  196. Fanaei Pirlar R. Wagemans J. Ponce Benavente L. Lavigne R. Trampuz A. Gonzalez Moreno M. Novel Bacteriophage Specific against Staphylococcus Epidermidis and with Antibiofilm Activity Viruses 2022 14 1340 35746811 10.3390/v14061340
  197. Glonti T. Pirnay J.-P. In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success Viruses 2022 14 1490 10.3390/v14071490 35891470
  198. Kaźmierczak N. Grygorcewicz B. Roszak M. Bochentyn B. Piechowicz L. Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus Aureus Biofilms Int. J. Mol. Sci. 2022 23 1274 10.3390/ijms23031274
  199. Podlesek Z. Žgur Bertok D. The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister Cells and Population Wide Tolerance Front. Microbiol. 2020 11 1785 10.3389/fmicb.2020.01785
  200. Alsaadi S.E. Lu H. Zhang M. Dykes G.F. Allison H.E. Horsburgh M.J. Bacteriophages from Human Skin Infecting Coagulase-Negative Staphylococcus: Diversity, Novel Species and Host Resistance Sci. Rep. 2023 14 8245 10.1038/s41598-024-59065-9
  201. Plumet L. Morsli M. Ahmad-Mansour N. Clavijo-Coppens F. Berry L. Sotto A. Lavigne J.-P. Costechareyre D. Molle V. Isolation and Characterization of New Bacteriophages against Staphylococcal Clinical Isolates from Diabetic Foot Ulcers Viruses 2023 15 2287 38140529 10.3390/v15122287
  202. Plotka M. Kapusta M. Dorawa S. Kaczorowska A.-K. Kaczorowski T. Ts2631 Endolysin from the Extremophilic Thermus Scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria Viruses 2019 11 657 10.3390/v11070657
  203. Kwon J. Kim S.W. Kim S.G. Kang J.W. Jung W.J. Lee S.B. Lee Y.M. Giri S.S. Chi C. Park S.C. The Characterization of a Novel Phage, pPa_SNUABM_DT01, Infecting Pseudomonas Aeruginosa Microorganisms 2021 9 2040 10.3390/microorganisms9102040
  204. Rice C. Novel Bacteriophages and Their Derived Proteins for the Biocontrol of Proteus and Pseudomonas Biofilms Ph.D. Thesis Queen’s University Belfast Belfast, UK 2022
  205. Hylling O. Carstens A.B. Kot W. Hansen M. Neve H. Franz C.M.A.P. Johansen A. Ellegaard-Jensen L. Hansen L.H. Two Novel Bacteriophage Genera from a Groundwater Reservoir Highlight Subsurface Environments as Underexplored Biotopes in Bacteriophage Ecology Sci. Rep. 2020 10 11879 10.1038/s41598-020-68389-1 32681144
  206. Sattar S. Bailie M. Yaqoob A. Khanum S. Fatima K. Altaf A.U.R.B. Ahmed I. Shah S.T.A. Munawar J. Zehra Q.A. et al. Characterization of Two Novel Lytic Bacteriophages Having Lysis Potential against MDR Avian Pathogenic Escherichia Coli Strains of Zoonotic Potential Sci. Rep. 2023 13 10043 37340022 10.1038/s41598-023-37176-z
  207. Nicolas M. Trotereau A. Culot A. Moodley A. Atterbury R. Wagemans J. Lavigne R. Velge P. Schouler C. Isolation and Characterization of a Novel Phage Collection against Avian-Pathogenic Escherichia Coli Microbiol. Spectr. 2023 11 e04296-22 37140373 10.1128/spectrum.04296-22
  208. Nale J.Y. Chan B. Nnadi N.E. Cheng J.K.J. Matts S. Nezam-Abadi N. Turkington C.J.R. Charreton L.M. Bola H. Nazir R. et al. Novel Escherichia Coli-Infecting Bacteriophages Isolated from Uganda That Target Human Clinical Isolates PHAGE 2023 4 141 149 10.1089/phage.2023.0012 37841386
  209. Parra B. Cockx B. Lutz V.T. Brøndsted L. Smets B.F. Dechesne A. Isolation and Characterization of Novel Plasmid-Dependent Phages Infecting Bacteria Carrying Diverse Conjugative Plasmids Microbiol. Spectr. 2023 12 e02537-23 10.1128/spectrum.02537-23
  210. Bhandare S. Lawal O.U. Colavecchio A. Cadieux B. Zahirovich-Jovich Y. Zhong Z. Tompkins E. Amitrano M. Kukavica-Ibrulj I. Boyle B. et al. Genomic and Phenotypic Analysis of Salmonella Enterica Bacteriophages Identifies Two Novel Phage Species Microorganisms 2024 12 695 10.3390/microorganisms12040695 38674639
  211. Nakonieczna A. Rutyna P. Fedorowicz M. Kwiatek M. Mizak L. Łobocka M. Three Novel Bacteriophages, J5a, F16Ba, and Z1a, Specific for Bacillus Anthracis, Define a New Clade of Historical Wbeta Phage Relatives Viruses 2022 14 213 10.3390/v14020213
  212. Kabwe M. Brown T. Speirs L. Ku H. Leach M. Chan H.T. Petrovski S. Lock P. Tucci J. Novel Bacteriophages Capable of Disrupting Biofilms from Clinical Strains of Aeromonas Hydrophila Front. Microbiol. 2020 11 194 32117183 10.3389/fmicb.2020.00194
  213. Kallies R. Hu D. Abdulkadir N. Schloter M. Rocha U. Identification of Huge Phages from Wastewater Metagenomes Viruses 2023 15 2330 10.3390/v15122330
  214. Kumariya R. Garsa A.K. Rajput Y.S. Sood S.K. Akhtar N. Patel S. Bacteriocins: Classification, Synthesis, Mechanism of Action and Resistance Development in Food Spoilage Causing Bacteria Microb. Pathog. 2019 128 171 177 10.1016/j.micpath.2019.01.002
  215. Simons A. Alhanout K. Duval R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria Microorganisms 2020 8 639 32349409 10.3390/microorganisms8050639
  216. Meade E. Slattery M.A. Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020 9 32 10.3390/antibiotics9010032 31963311
  217. Yount N.Y. Weaver D.C. de Anda J. Lee E.Y. Lee M.W. Wong G.C.L. Yeaman M.R. Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm Front. Immunol. 2020 11 1873 33013838 10.3389/fimmu.2020.01873
  218. Aljohani A.B. Al-Hejin A.M. Shori A.B. Bacteriocins as Promising Antimicrobial Peptides, Definition, Classification, and Their Potential Applications in Cheeses Food Sci. Technol. 2023 43 e118021 10.1590/fst.118021
  219. Lei S. Zhao R. Sun J. Ran J. Ruan X. Zhu Y. Partial Purification and Characterization of a Broad-Spectrum Bacteriocin Produced by a Lactobacillus Plantarum Zrx03 Isolated from Infant’s Feces Food Sci. Nutr. 2020 8 2214 2222 10.1002/fsn3.1428 32405378
  220. Golneshin A. Gor M.-C. Williamson N. Vezina B. Van T.T.H. May B.K. Smith A.T. Discovery and Characterisation of Circular Bacteriocin Plantacyclin B21AG from Lactiplantibacillus Plantarum B21 Heliyon 2020 6 e04715 10.1016/j.heliyon.2020.e04715
  221. Pei J. Jin W. Abd El-Aty A.M. Baranenko D.A. Gou X. Zhang H. Geng J. Jiang L. Chen D. Yue T. Isolation, Purification, and Structural Identification of a New Bacteriocin Made by Lactobacillus Plantarum Found in Conventional Kombucha Food Control 2020 110 106923 10.1016/j.foodcont.2019.106923
  222. Jiang Y.-H. Xin W.-G. Yang L.-Y. Ying J.-P. Zhao Z.-S. Lin L.-B. Li X.-Z. Zhang Q.-L. A Novel Bacteriocin against Staphylococcus Aureus from Lactobacillus Paracasei Isolated from Yunnan Traditional Fermented Yogurt: Purification, Antibacterial Characterization, and Antibiofilm Activity J. Dairy Sci. 2022 105 2094 2107 10.3168/jds.2021-21126
  223. Thuy T.T.D. Lu H.-F. Bregente C.J.B. Huang F.-C.A. Tu P.-C. Kao C.-Y. Characterization of the Broad-Spectrum Antibacterial Activity of Bacteriocin-like Inhibitory Substance-Producing Probiotics Isolated from Fermented Foods BMC Microbiol. 2024 24 85 10.1186/s12866-024-03245-0
  224. Xing Y. Li W. Aweya J.J. Jin R. Lin R. Liang D. Weng W. Yang S. Lacticaseibacillus Paracasei-Derived Antibacterial Peptide NGJ1D and Its Mechanism of Action Against Staphylococcus Aureus Food Bioprocess Technol. 2024 10.1007/s11947-024-03419-8
  225. Elnar A.G. Kim G.-B. In Vitro and In Silico Characterization of N-Formylated Two-Peptide Bacteriocin from Enterococcus Faecalis CAUM157 with Anti-Listeria Activity Probiotics Antimicro. Prot. 2024 16 1130 1147 38743207 10.1007/s12602-024-10265-9
  226. Cui G. Pan C. Xu P. Li Y. Wang L. Gong B. Li X. Huang S. Purification and Characterization of a Novel Bacteriocin Produced by Enterococcus Faecalis CG-9 from Human Saliva Biotechnol. Biotechnol. Equip. 2020 34 1224 1233 10.1080/13102818.2020.1830714
  227. Sharma P. Kaur S. Chadha B.S. Kaur R. Kaur M. Kaur S. Anticancer and Antimicrobial Potential of Enterocin 12a from Enterococcus Faecium BMC Microbiol. 2021 21 39 10.1186/s12866-021-02086-5 33541292
  228. Newstead L.L. Varjonen K. Nuttall T. Paterson G.K. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus Aureus Infections Antibiotics 2020 9 40 10.3390/antibiotics9020040
  229. Ovchinnikov K.V. Kranjec C. Thorstensen T. Carlsen H. Diep D.B. Successful Development of Bacteriocins into Therapeutic Formulation for Treatment of MRSA Skin Infection in a Murine Model Antimicrob. Agents Chemother. 2020 64 e00829-20 10.1128/AAC.00829-20
  230. Sriragavi G. Sangeetha M. Santhakumar M. Lokesh E. Nithyalakshmi M. Saleel C.A. Balagurunathan R. Exploring Antibacterial Properties of Bioactive Compounds Isolated from Streptomyces Sp. in Bamboo Rhizosphere Soil ACS Omega 2023 8 36333 36343 10.1021/acsomega.3c04954
  231. Mwangi J. Kamau P.M. Thuku R.C. Lai R. Design Methods for Antimicrobial Peptides with Improved Performance Zool. Res. 2023 44 1095 1114 10.24272/j.issn.2095-8137.2023.246 37914524
  232. Verma S. Pathak R.K. Chapter 16—Discovery and Optimization of Lead Molecules in Drug Designing Bioinformatics Singh D.B. Pathak R.K. Academic Press Cambridge, MA, USA 2022 253 267 978-0-323-89775-4
  233. Luong H.X. Thanh T.T. Tran T.H. Antimicrobial Peptides—Advances in Development of Therapeutic Applications Life Sci. 2020 260 118407 10.1016/j.lfs.2020.118407
  234. Teixeira M.C. Carbone C. Sousa M.C. Espina M. Garcia M.L. Sanchez-Lopez E. Souto E.B. Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs) Nanomaterials 2020 10 560 32244858 10.3390/nano10030560
  235. Sowers A. Wang G. Xing M. Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology Microorganisms 2023 11 1129 10.3390/microorganisms11051129
  236. Chauhan M.K. Bhatt N. Bioavailability Enhancement of Polymyxin B with Novel Drug Delivery: Development and Optimization Using Quality-by-Design Approach J. Pharm. Sci. 2019 108 1521 1528 10.1016/j.xphs.2018.11.032 30472265
  237. Gan B.H. Gaynord J. Rowe S.M. Deingruber T. Spring D.R. The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions Chem. Soc. Rev. 2021 50 7820 7880 10.1039/D0CS00729C 34042120
  238. Zhou M. Qian Y. Xie J. Zhang W. Jiang W. Xiao X. Chen S. Dai C. Cong Z. Ji Z. et al. Poly(2-Oxazoline)-Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters While Alleviating Antimicrobial Resistance Angew. Chem. Int. Ed. 2020 59 6412 6419 32083767 10.1002/anie.202000505
  239. Ouertani A. Mosbah A. Cherif A. Ouertani A. Mosbah A. Cherif A. Anti-Microbial Peptides: The Importance of Structure-Function Analysis in the Design of New AMPs Insights on Antimicrobial Peptides IntechOpen London, UK 2022 978-1-83969-714-2
  240. Ajish C. Kumar S.D. Kim E.Y. Yang S. Shin S.Y. A Short Novel Antimicrobial Peptide BP100-W with Antimicrobial, Antibiofilm and Anti-Inflammatory Activities Designed by Replacement with Tryptophan J. Anal. Sci. Technol. 2022 13 46 10.1186/s40543-022-00358-x
  241. Wiman E. Zattarin E. Aili D. Bengtsson T. Selegård R. Khalaf H. Development of Novel Broad-Spectrum Antimicrobial Lipopeptides Derived from Plantaricin NC8 β Sci. Rep. 2023 13 4104 10.1038/s41598-023-31185-8 36914718
  242. Chaudhary S. Ali Z. Tehseen M. Haney E.F. Pantoja-Angles A. Alshehri S. Wang T. Clancy G.J. Ayach M. Hauser C. et al. Efficient in Planta Production of Amidated Antimicrobial Peptides That Are Active against Drug-Resistant ESKAPE Pathogens Nat. Commun. 2023 14 1464 10.1038/s41467-023-37003-z 36928189
  243. Ramazi S. Mohammadi N. Allahverdi A. Khalili E. Abdolmaleki P. A Review on Antimicrobial Peptides Databases and the Computational Tools Database 2022 2022 baac011 10.1093/database/baac011
  244. Cardoso M.H. Orozco R.Q. Rezende S.B. Rodrigues G. Oshiro K.G.N. Cândido E.S. Franco O.L. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front. Microbiol. 2020 10 3097 10.3389/fmicb.2019.03097
  245. Boone K. Wisdom C. Camarda K. Spencer P. Tamerler C. Combining Genetic Algorithm with Machine Learning Strategies for Designing Potent Antimicrobial Peptides BMC Bioinform. 2021 22 239 10.1186/s12859-021-04156-x
  246. Rumancev C. Rosenhahn A. Hilpert K. BioSAXS—An Emerging Method to Accelerate, Enrich and de-Risk Antimicrobial Drug Development Front. Pharmacol. 2022 13 947005 10.3389/fphar.2022.947005
  247. Li J.X. Bu Y.S. Liu Y.X. Liu Y.S. Yin B.X. Zhou W. Yi H. De Novo Design and Antibacterial Activity of α-Helical Antimicrobial Peptide YHX-1 J. Food Sci. Technol. 2022 40 98 111 98–104, 111 10.12301/spxb202100795
  248. Mustafa G. Mehmood R. Mahrosh H.S. Mehmood K. Ahmed S. Investigation of Plant Antimicrobial Peptides against Selected Pathogenic Bacterial Species Using a Peptide-Protein Docking Approach BioMed Res. Int. 2022 2022 1077814 10.1155/2022/1077814 35355819
  249. Lin T.-T. Yang L.-Y. Lin C.-Y. Wang C.-T. Lai C.-W. Ko C.-F. Shih Y.-H. Chen S.-H. Intelligent De Novo Design of Novel Antimicrobial Peptides against Antibiotic-Resistant Bacteria Strains Int. J. Mol. Sci. 2023 24 6788 37047760 10.3390/ijms24076788
  250. Szymczak P. Możejko M. Grzegorzek T. Jurczak R. Bauer M. Neubauer D. Sikora K. Michalski M. Sroka J. Setny P. et al. Discovering Highly Potent Antimicrobial Peptides with Deep Generative Model HydrAMP Nat. Commun. 2023 14 1453 10.1038/s41467-023-36994-z 36922490
  251. Nedyalkova M. Paluch A.S. Vecini D.P. Lattuada M. Progress and Future of the Computational Design of Antimicrobial Peptides (AMPs): Bio-Inspired Functional Molecules Digit. Discov. 2024 3 9 22 10.1039/D3DD00186E
  252. Aguilera-Puga M.d.C. Cancelarich N.L. Marani M.M. de la Fuente-Nunez C. Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence Computational Drug Discovery and Design Gore M. Jagtap U.B. Springer New York, NY, USA 2024 329 352 978-1-07-163441-7
  253. Ogunsona E.O. Muthuraj R. Ojogbo E. Valerio O. Mekonnen T.H. Engineered Nanomaterials for Antimicrobial Applications: A Review Appl. Mater. Today 2020 18 100473 10.1016/j.apmt.2019.100473
  254. Díez-Pascual A.M. Recent Progress in Antimicrobial Nanomaterials Nanomaterials 2020 10 2315 10.3390/nano10112315
  255. Alavi M. Rai M. Recent Advances in Antibacterial Applications of Metal Nanoparticles (MNPs) and Metal Nanocomposites (MNCs) against Multidrug-Resistant (MDR) Bacteria Expert Rev. Anti-Infect. Ther. 2019 17 419 428 10.1080/14787210.2019.1614914
  256. Karnwal A. Kumar G. Pant G. Hossain K. Ahmad A. Alshammari M.B. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections ACS Omega 2023 8 13492 13508 10.1021/acsomega.3c00110
  257. Shaikh S. Nazam N. Rizvi S.M.D. Ahmad K. Baig M.H. Lee E.J. Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance Int. J. Mol. Sci. 2019 20 2468 10.3390/ijms20102468
  258. Singh A. Gautam P.K. Verma A. Singh V. Shivapriya P.M. Shivalkar S. Sahoo A.K. Samanta S.K. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review Biotechnol. Rep. 2020 25 e00427 10.1016/j.btre.2020.e00427 32055457
  259. Ortega-Nieto C. Losada-Garcia N. Prodan D. Furtos G. Palomo J.M. Recent Advances on the Design and Applications of Antimicrobial Nanomaterials Nanomaterials 2023 13 2406 10.3390/nano13172406 37686914
  260. Vaghela H.M. Pathan A. Shah R. Biogenic Synthesis of Au, Pd and Pt Metal: Nanoparticles Using Various Plants and Its Medicinal Applications: A Review LAP LAMBERT Academic Publishing Saarbrücken, Germany 2019 978-3-330-01803-7
  261. Kushwah K.S. Verma D.K. Kushwah K.S. Verma D.K. Biological Synthesis of Metallic Nanoparticles from Different Plant Species 21st Century Nanostructured Materials—Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture IntechOpen London, UK 2021 978-1-80355-085-5
  262. Rizki I.N. Klaypradit W. Patmawati Utilization of Marine Organisms for the Green Synthesis of Silver and Gold Nanoparticles and Their Applications: A Review Sustain. Chem. Pharm. 2023 31 100888 10.1016/j.scp.2022.100888
  263. Bhardwaj K. Chopra C. Bhardwaj P. Dhanjal D.S. Singh R. Najda A. Cruz-Martins N. Singh S. Sharma R. Kuča K. et al. Biogenic Metallic Nanoparticles from Seed Extracts: Characteristics, Properties, and Applications J. Nanomater. 2022 2022 2271278 10.1155/2022/2271278
  264. Chauhan A. Anand J. Parkash V. Rai N. Biogenic Synthesis: A Sustainable Approach for Nanoparticles Synthesis Mediated by Fungi Inorg. Nano-Met. Chem. 2023 53 460 473 10.1080/24701556.2021.2025078
  265. Nandhini S.N. Sisubalan N. Vijayan A. Karthikeyan C. Gnanaraj M. Gideon D.A.M. Jebastin T. Varaprasad K. Sadiku R. Recent Advances in Green Synthesized Nanoparticles for Bactericidal and Wound Healing Applications Heliyon 2023 9 e13128 10.1016/j.heliyon.2023.e13128
  266. Mayegowda S.B. Sarma G. Gadilingappa M.N. Alghamdi S. Aslam A. Refaat B. Almehmadi M. Allahyani M. Alsaiari A.A. Aljuaid A. et al. Green-Synthesized Nanoparticles and Their Therapeutic Applications: A Review Green Process. Synth. 2023 12 20230001 10.1515/gps-2023-0001
  267. Bhati M. Biogenic Synthesis of Metallic Nanoparticles: Principles and Applications Mater. Today Proc. 2023 81 882 887 10.1016/j.matpr.2021.04.272
  268. Jayasinghe M.K. Lee C.Y. Tran T.T.T. Tan R. Chew S.M. Yeo B.Z.J. Loh W.X. Pirisinu M. Le M.T.N. The Role of in Silico Research in Developing Nanoparticle-Based Therapeutics Front. Digit. Health 2022 4 838590 10.3389/fdgth.2022.838590
  269. Kailasa S.K. Park T.-J. Rohit J.V. Koduru J.R. Chapter 14—Antimicrobial Activity of Silver Nanoparticles Nanoparticles in Pharmacotherapy Grumezescu A.M. William Andrew Publishing Norwich, NY, USA 2019 461 484 978-0-12-816504-1
  270. Das G. Patra J.K. Debnath T. Ansari A. Shin H.-S. Investigation of Antioxidant, Antibacterial, Antidiabetic, and Cytotoxicity Potential of Silver Nanoparticles Synthesized Using the Outer Peel Extract of Ananas comosus (L.) PLoS ONE 2019 14 e0220950 10.1371/journal.pone.0220950
  271. Paladini F. Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends Materials 2019 12 2540 10.3390/ma12162540 31404974
  272. Anees Ahmad S. Sachi Das S. Khatoon A. Tahir Ansari M. Afzal M. Saquib Hasnain M. Kumar Nayak A. Bactericidal Activity of Silver Nanoparticles: A Mechanistic Review Mater. Sci. Energy Technol. 2020 3 756 769 10.1016/j.mset.2020.09.002
  273. Hamad A. Khashan K.S. Hadi A. Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents J. Inorg. Organomet. Polym. 2020 30 4811 4828 10.1007/s10904-020-01744-x
  274. Bruna T. Maldonado-Bravo F. Jara P. Caro N. Silver Nanoparticles and Their Antibacterial Applications Int. J. Mol. Sci. 2021 22 7202 10.3390/ijms22137202
  275. Gupta A. Briffa S.M. Swingler S. Gibson H. Kannappan V. Adamus G. Kowalczuk M. Martin C. Radecka I. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications Biomacromolecules 2020 21 1802 1811 31967794 10.1021/acs.biomac.9b01724
  276. Das C.G.A. Kumar V.G. Dhas T.S. Karthick V. Govindaraju K. Joselin J.M. Baalamurugan J. Antibacterial Activity of Silver Nanoparticles (Biosynthesis): A Short Review on Recent Advances Biocatal. Agric. Biotechnol. 2020 27 101593 10.1016/j.bcab.2020.101593
  277. Feroze N. Arshad B. Younas M. Afridi M.I. Saqib S. Ayaz A. Fungal Mediated Synthesis of Silver Nanoparticles and Evaluation of Antibacterial Activity Microsc. Res. Tech. 2020 83 72 80 10.1002/jemt.23390 31617656
  278. Garibo D. Borbón-Nuñez H.A. de León J.N.D. García Mendoza E. Estrada I. Toledano-Magaña Y. Tiznado H. Ovalle-Marroquin M. Soto-Ramos A.G. Blanco A. et al. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity Sci. Rep. 2020 10 12805 10.1038/s41598-020-69606-7
  279. Rahimi M. Noruzi E.B. Sheykhsaran E. Ebadi B. Kariminezhad Z. Molaparast M. Mehrabani M.G. Mehramouz B. Yousefi M. Ahmadi R. et al. Carbohydrate Polymer-Based Silver Nanocomposites: Recent Progress in the Antimicrobial Wound Dressings Carbohydr. Polym. 2020 231 115696 10.1016/j.carbpol.2019.115696
  280. Barabadi H. Mojab F. Vahidi H. Marashi B. Talank N. Hosseini O. Saravanan M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles Inorg. Chem. Commun. 2021 129 108647 10.1016/j.inoche.2021.108647
  281. Ramírez-Rosas S.L. Delgado-Alvarado E. Sanchez-Vargas L.O. Herrera-May A.L. Peña-Juarez M.G. Gonzalez-Calderon J.A. Green Route to Produce Silver Nanoparticles Using the Bioactive Flavonoid Quercetin as a Reducing Agent and Food Anti-Caking Agents as Stabilizers Nanomaterials 2022 12 3545 10.3390/nano12193545 36234674
  282. Chavan R.R. Bhutkar M.A. Bhinge S.D. Design, Synthesis, and Optimization of Silver Nanoparticles Using an Artocarpus heterophyllus Lam. Leaf Extract and Its Antibacterial Application Nano Biomed. Eng. 2023 15 239 252 10.26599/NBE.2023.9290011
  283. Mahalingam S. Govindaraji P.K. Solomon V.G. Kesavan H. Neelan Y.D. Bakthavatchalam S. Kim J. Bakthavatchalam P. Biogenic Synthesis and Characterization of Silver Nanoparticles: Evaluation of Their Larvicidal, Antibacterial, and Cytotoxic Activities ACS Omega 2023 8 11923 11930 37033866 10.1021/acsomega.2c07531
  284. Said A. Abu-Elghait M. Atta H.M. Salem S.S. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia Inermis Against Common Pathogens from Urinary Tract Infection Appl. Biochem. Biotechnol. 2024 196 85 98 10.1007/s12010-023-04482-1
  285. Hani U. Kidwan F.N. Albarqi L.A. Al-qahtani S.A. AlHadi R.M. AlZaid H.A. Haider N. Ansari M.A. Biogenic Silver Nanoparticle Synthesis Using Orange Peel Extract and Its Multifaceted Biomedical Application Bioprocess. Biosyst. Eng. 2024 47 1363 1375 10.1007/s00449-024-03031-2
  286. El-Zahed M.M. Abou-Dobara M.I. El-Sayed A.K.A. Baka Z.A.M. Ag/SiO2Nanocomposite Mediated by Escherichia Coli D8 and Their Antimicrobial Potential Nova Biotechnol. Chim. 2022 21 e1023 10.36547/nbc.1023
  287. Naseer M. Aslam U. Khalid B. Chen B. Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia Fistula and Melia Azadarach and Their Antibacterial Potential Sci. Rep. 2020 10 9055 10.1038/s41598-020-65949-3 32493935
  288. Gur T. Meydan I. Seckin H. Bekmezci M. Sen F. Green Synthesis, Characterization and Bioactivity of Biogenic Zinc Oxide Nanoparticles Environ. Res. 2022 204 111897 34418450 10.1016/j.envres.2021.111897
  289. Veselova V.O. Plyuta V.A. Kostrov A.N. Vtyurina D.N. Abramov V.O. Abramova A.V. Voitov Y.I. Padiy D.A. Thu V.T.H. Hue L.T. et al. Long-Term Antimicrobial Performance of Textiles Coated with ZnO and TiO2Nanoparticles in a Tropical Climate J. Funct. Biomater. 2022 13 233 10.3390/jfb13040233
  290. Rasool A. Kiran S. Gulzar T. Abrar S. Ghaffar A. Shahid M. Nosheen S. Naz S. Biogenic Synthesis and Characterization of ZnO Nanoparticles for Degradation of Synthetic Dyes: A Sustainable Environmental Cleaner Approach J. Clean. Prod. 2023 398 136616 10.1016/j.jclepro.2023.136616
  291. Chandrasekaran S. Anbazhagan V. Green Synthesis of ZnO and V-Doped ZnO Nanoparticles Using Vinca Rosea Plant Leaf for Biomedical Applications Appl. Biochem. Biotechnol. 2024 196 50 67 10.1007/s12010-023-04546-2 37097404
  292. Ramasubbu K. Rajeswari V.D. Green Synthesising ZnO Nanoparticle Using Sesbania Grandiflora and Their Evaluation of Anti-Diabetic Anti-Advanced Glycation End Products and Cytotoxic Effects Appl Biochem Biotechnol 2024 196 2652 2672 10.1007/s12010-023-04631-6 37432639
  293. Rajeshkumar S. Menon S. Venkat Kumar S. Tambuwala M.M. Bakshi H.A. Mehta M. Satija S. Gupta G. Chellappan D.K. Thangavelu L. et al. Antibacterial and Antioxidant Potential of Biosynthesized Copper Nanoparticles Mediated through Cissus arnotiana Plant Extract J. Photochem. Photobiol. B Biol. 2019 197 111531 31212244 10.1016/j.jphotobiol.2019.111531
  294. Losada-García N. Rodríguez-Otero A. Palomo J.M. Tailorable Synthesis of Heterogeneous Enzyme–Copper Nanobiohybrids and Their Application in the Selective Oxidation of Benzene to Phenol Catal. Sci. Technol. 2020 10 196 206 10.1039/C9CY02091H
  295. Naz S. Gul A. Zia M. Javed R. Synthesis, Biomedical Applications, and Toxicity of CuO Nanoparticles Appl. Microbiol. Biotechnol. 2023 107 1039 1061 10.1007/s00253-023-12364-z
  296. Ortega-Nieto C. Losada-Garcia N. Pessela B.C. Domingo-Calap P. Palomo J.M. Design and Synthesis of Copper Nanobiomaterials with Antimicrobial Properties ACS Bio Med. Chem. Au 2023 3 349 358 10.1021/acsbiomedchemau.2c00089 37599792
  297. Madubuonu N. Aisida S.O. Ali A. Ahmad I. Zhao T. Botha S. Maaza M. Ezema F.I. Biosynthesis of Iron Oxide Nanoparticles via a Composite of Psidium Guavaja-Moringa Oleifera and Their Antibacterial and Photocatalytic Study J. Photochem. Photobiol. B Biol. 2019 199 111601 10.1016/j.jphotobiol.2019.111601
  298. Chellapa L.R. Shanmugam R. Indiran M.A. Samuel S.R. Biogenic Nanoselenium Synthesis, Its Antimicrobial, Antioxidant Activity and Toxicity Bioinspired Biomim. Nanobiomater. 2020 9 184 189 10.1680/jbibn.19.00054
  299. Lange A. Matuszewski A. Kutwin M. Ostrowska A. Jaworski S. Farnesol and Selected Nanoparticles (Silver, Gold, Copper, and Zinc Oxide) as Effective Agents Against Biofilms Formed by Pathogenic Microorganisms Nanotechnol. Sci. Appl. 2024 17 107 125 10.2147/NSA.S457124
  300. Yılmaz G.E. Göktürk I. Ovezova M. Yılmaz F. Kılıç S. Denizli A. Antimicrobial Nanomaterials: A Review Hygiene 2023 3 269 290 10.3390/hygiene3030020

Issue

Molecules, vol. 29, 2024, , https://doi.org/10.3390/molecules29204889

Copyright MDPI

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science