Autors: Stefanov, B. I., Tzaneva, B. R., Mateev, V. M., Iliev, I. C.
Title: Electroless Copper Patterning on TiO2-Functionalized Mica for Flexible Electronics
Keywords: electroless deposition, flexible PCB substrate, mica, photodeposition, TiO2

Abstract: Featured Application: The technology presented in this work enables the fabrication of conductive patterns on flexible mica substrates through its functionalization with TiO2. This approach allows for the photocatalytic patterning of electroless copper deposition Ag-based catalyst, which facilitates a versatile and scalable route for creating conductive layers on flexible inorganic substrates, making it suitable for applications in electronics and, as demonstrated, sensing device fabrications. The formation of conductive copper patterns on mica holds promise for developing cost-effective flexible electronics and sensing devices, though it is challenging due to the low adhesion of mica’s atomically flat surface. Herein, we present a wet-chemical method for copper patterning on flexible mica substrates via electroless copper deposition (Cu-ELD). The process involves pre-functionalizing 50 µm thick muscovite mica with a titanium dioxide (TiO2) layer, via a sol–gel dip-coating method with a titanium acetylacetonate-based sol. Photolithography is employed to selectively activate the TiO2-coated mica substrates for Cu-ELD, utilizing in situ photodeposited silver (Ag) nanoclusters as a catalyst. Copper is subsequently plated using a formaldehyde-based Cu-ELD bath, with the duration of deposition primarily determining the thickness and electrical properties of the copper layer. Conductive Cu layers with thicknesses in the 70–130 nm range were formed within 1–2 min of deposition, exhibiting an inverse relationship between plating time and sheet resistance, which ranged from 600 to 300 mΩ/sq. The electrochemical thickening of these layers to 1 μm further reduced the sheet resistance to 27 mΩ/sq. Finally, the potential of Cu-ELD patterning on TiO2-functionalized mica for creating functional sensing devices was demonstrated by fabricating a functional resistance temperature detector (RTD) on the titania surface.

References

  1. Hu X. Huang Z. Zhou X. Li P. Wang Y. Huang Z. Su M. Ren W. Li F. Li M. et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold Adv. Mater. 2017 29 1703236 10.1002/adma.201703236 28885738
  2. Wang K.N. Li Z.Z. Cai Z.M. Cao L.M. Zhong N.N. Liu B. Zhou K. Huo F.Y. Cai B. Bu L.L. The applications of flexible electronics in dental, oral, and craniofacial medicine NPJ Flex. Electron. 2024 8 33 10.1038/s41528-024-00318-y
  3. Li H. Ma Y. Huang Y. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: A review Mater. Horiz. 2021 8 383 400 10.1039/D0MH00483A 34821261
  4. Hussain A.M. Hussain M.M. CMOS-technology-enabled flexible and stretchable electronics for internet of everything applications Adv. Mater. 2016 28 4219 4249 10.1002/adma.201504236
  5. Lee S. Reuveny A. Reeder J. Lee S. Jin H. Liu Q. Yokota T. Sekitani T. Isoyama T. Abe Y. et al. A transparent bending-insensitive pressure sensor Nat. Nanotechnol. 2016 11 472 478 10.1038/nnano.2015.324
  6. Zhang Y. Zhang T. Huang Z. Yang J. A new class of electronic devices based on flexible porous substrates Adv. Sci. 2022 9 2105084 10.1002/advs.202105084
  7. Song F. Zheng D. Feng J. Liu J. Ye T. Li Z. Wang K. Liu S. Yang D. Mechanical durability and flexibility in perovskite photovoltaics: Advancements and applications Adv. Mater. 2024 36 2312041 10.1002/adma.202312041
  8. Bitla Y. Chu Y.H. MICAtronics: A new platform for flexible X-tronics FlatChem 2017 3 26 42 10.1016/j.flatc.2017.06.003
  9. Bitla Y. Chu Y.H. van der Waals oxide heteroepitaxy for soft transparent electronics Nanoscale 2020 12 18523 18544 10.1039/D0NR04219F
  10. Kim D.Y. Lee S. Lin Z.H. Choi K.H. Doo S.G. Chang H. Leem J.Y. Wang Z.L. Kim S.O. High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators Nano Energy 2014 9 101 111 10.1016/j.nanoen.2014.07.004
  11. Li M. Wang Y. Wang Y. Wei X. AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application Ceram. Int. 2017 43 15442 15446 10.1016/j.ceramint.2017.08.089
  12. Liu J. High-performance orthorhombic correlated transparent conducting epilayer integrated on a flexible mica substrate: The case of CaMoO3Ceram. Int. 2024 50 22149 22158 10.1016/j.ceramint.2024.04.105
  13. Ulapane S.B. Doolin J.L. Okeowo M.K. Berrie C.L. Atomic force microscopy-based static plowing lithography using CaCO3nanoparticle resist layers as a substrate-flexible selective metal deposition resist J. Phys. Chem. C 2021 125 23490 23500 10.1021/acs.jpcc.1c07239
  14. Liu W. Qiao X. Liu S. Shi S. Liang K. Tang L. A new process for pre-treatment of electroless copper plating on the surface of mica powders with ultrasonic and nano-nickel J. Alloys Compd. 2019 791 613 620 10.1016/j.jallcom.2019.03.360
  15. Schneider M. Möhwald H. Akari S. Quantitative measurement of chromium’s ability to promote adhesion J. Adhes. 2003 79 597 607 10.1080/00218460309539
  16. Su W. Yao L. Yang F. Li P. Chen J. Liang L. Electroless plating of copper on surface-modified glass substrate Appl. Surf. Sci. 2011 257 8067 8071 10.1016/j.apsusc.2011.04.100
  17. Liu J. Manganese-doped transparent conductive magnetic indium oxide films integrated on flexible mica substrates with high mechanical durability Ceram. Int. 2022 48 3390 3396 10.1016/j.ceramint.2021.10.115
  18. Huan Y. Shi J. Zhao G. Yan X. Zhang Y. 2D metallic transitional metal dichalcogenides for electrochemical hydrogen evolution Energy Technol. 2019 7 1801025 10.1002/ente.201801025
  19. Schouteden K. Amin-Ahmadi B. Li Z. Muzychenko D. Schryvers D. Van Haesendonck C. Electronically decoupled stacking fault tetrahedra embedded in Au (111) films Nat. Commun. 2016 7 14001 10.1038/ncomms14001
  20. Zhou S. Gan L. Wang D. Li H. Zhai T. Space-confined vapor deposition synthesis of two dimensional materials Nano Res. 2018 11 2909 2931 10.1007/s12274-017-1942-3
  21. Hsu H.-H. Lin K.-H. Lin S.-J. Yeh J.-W. Electroless Copper Deposition for Ultralarge-Scale Integration J. Electrochem. Soc. 2000 148 C47 10.1149/1.1344538
  22. Shacham-Diamand Y. Dubin V. Angyal M. Electroless copper deposition for ULSI Thin Solid Film. 1995 262 93 103 10.1016/0040-6090(95)05836-2
  23. Pawar K. Dixit P. A critical review of copper electroless deposition on glass substrates for microsystems packaging applications Surf. Eng. 2022 38 576 617 10.1080/02670844.2022.2142002
  24. Zasadzińska M. Knych T. Smyrak B. Strezępek P. Investigation of the Dendritic Structure Influence on the Electrical and Mechanical Properties Diversification of the Continuously Casted Copper Strand Materials 2020 13 5513 10.3390/ma13235513 33287172
  25. Pedraza A.J. Godbole M.J. Recrystallization and mechanical properties of electroless copper. I Scr. Metall. Mater. 1990 24 1185 1189 10.1016/0956-716X(90)90325-B
  26. Oita M. Matsuoka M. Iwakura C. Deposition rate and morphology of electroless copper film from solutions containing 2,2′-dipyridyl Electrochim. Acta 1997 42 1435 1440 10.1016/S0013-4686(96)00367-2
  27. Ghosh S. Electroless copper deposition: A critical review Thin Solid Film. 2019 669 641 658 10.1016/j.tsf.2018.11.016
  28. Bindra P. White J.R. Ch. 12. Fundamental aspects of electroless copper plating Electroless Plating: Fundamentals and Applications Mallory G.O. Hajdu J.B. William Andrew Norwich, NY, USA 1990 289 329
  29. Zhang Y. Zhang T. Shi H. Liu Q. Wang T. Fabrication of flexible copper patterns by electroless plating with copper nanoparticles as seeds Appl. Surf. Sci. 2021 547 149220 10.1016/j.apsusc.2021.149220
  30. Wang X. Ma W. Cai Z. Colloidal Silver Activation for Electroless Copper Deposition Surf. Eng. Appl. Electrochem. 2023 59 467 472 10.3103/S1068375523040166
  31. Stefanov B.I. Milusheva V.S. Kolev H.G. Tzaneva B.R. Photocatalytic activation of TiO2-functionalized anodic aluminium oxide for electroless copper deposition Catal. Sci. Technol. 2022 12 7027 7037 10.1039/D2CY01466A
  32. Stefanov B.I. Wet-Chemical Fabrication of Functional Humidity Sensors on a TiO2-Coated Glass Substrate via UV Photodeposition Coatings 2024 14 795 10.3390/coatings14070795
  33. Rashed M.N. Arifien A.E. El-Dowy F.A. Preparation and characterization of nanomuscovite by intercalation method for adsorption of heavy metals from polluted water Environ. Geochem. Health 2023 45 5127 5144 10.1007/s10653-023-01545-4 37074498
  34. Liang J.J. Hawthorne F.C. Rietveld refinement of micaceous materials; muscovite-2M 1, a comparison with single-crystal structure refinement Canad. Mineral. 1996 34 115 122
  35. Wang H. Sun Y. Chu J. Wang X. Zhang M. Intensive study on structure transformation of muscovite single crystal under high-dose γ-ray irradiation and mechanism speculation R. Soc. Open Sci. 2019 6 190594 10.1098/rsos.190594
  36. Li H. Zhang L. Christy A.G. The correlation between Raman spectra and the mineral composition of muscovite and phengite Ultrahigh-Pressure Metamorphism Dobrzhinetskaya L.F. Faryad S.W. Wallis S. Cuthbert S. Elsevier Amsterdam, The Netherlands 2011 187 212 10.1016/B978-0-12-385144-4.00006-0
  37. Zhang W.F. He Y.L. Zhang M.S. Yin Z. Chen Q. Raman scattering study on anatase TiO2nanocrystals J. Phys. D 2000 33 912 10.1088/0022-3727/33/8/305
  38. Melvin A.A. Illath K. Das T. Raja T. Bhattacharyya S. Gopinath C.S. M–Au/TiO2(M= Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces Nanoscale 2015 7 13477 13488 10.1039/C5NR03735B
  39. Shirpay A. Tavakoli M. The behavior of the active modes of the anatase phase of TiO2at high temperatures by Raman scattering spectroscopy Indian J. Phys. 2022 96 1673 1681 10.1007/s12648-021-02123-z
  40. Joshi N. Jain N. Pathak A. Singh J. Prasad R. Upadhyaya C.P. Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities J. Sol-Gel Sci. Technol. 2018 86 682 689 10.1007/s10971-018-4666-2
  41. Shan W. Liu R. Zhao H. He Z. Lai Y. Li S. He G. Liu J. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2electrocatalytic reduction ACS Nano 2020 14 11363 11372 10.1021/acsnano.0c03534
  42. Radoeva M. Radoev B. Ohm resistivity of electroless copper layers as a function of their thicknesses J. Mater. Sci. 1995 30 2215 2219 10.1007/BF01184563
  43. Glickman E. Inberg A. Fishelson N. Shaham-Diamand Y. Electroless deposition and electrical resistivity of sub-100 nm Cu films on SAMs: State of the art Microelectron. Eng. 2007 84 2466 2470 10.1016/j.mee.2007.05.032
  44. Schmiedl E. Wissmann P. Finzel H.U. The electrical resistivity of ultra-thin copper films Z. Für Naturforschung A 2008 63 739 744 10.1515/zna-2008-10-1118
  45. Eargle J.M. Resistance Change with Temperature for Copper Electroacoustical Reference Data Springer US Boston, MA, USA 1994 106 107 10.1007/978-1-4615-2027-6_52

Issue

Applied Sciences (Switzerland), vol. 14, pp. 9780, 2024, , https://doi.org/10.3390/app14219780

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus