Autors: Ivanova, T. I. Title: Usage of Semantic Technologies for Representing Non-Precise or Vague Knowledge Keywords: fuzzy logics, fuzzy ontology, imprecise knowledge, methodology, ontologyAbstract: Ontologies are widely used for development of semantic knowledge models. Most ontology representation languages have strong logical ground in Description Logics (DLs), that can represent only crisp knowledge. DLs cannot directly manage imprecise knowledge, which is needed for solving problems in many practical domains. Other knowledge representation formalisms as fuzzy or probabilistic logics are introduced to express imprecise or vague information. This paper aims to analyze semantic technologies for representing and reasoning with non-precise or vague knowledge and proposes a methodology for modeling imprecise information in many real domains. References - A. F. D. Kana and B. O. Akinkunmi, "Fuzzy Reasoning Procedure for Ontologies based on Rough Membership Approximation", Future Computing & Informatics Journal, 7 (1), 2022, pp. 69-86.
- B. Liu, J. Li and Y. Zhao, "A Query-specific Reasoning Method for Inconsistent and Uncertain Ontology", in International Multi-Conference of Engineers and Computer scientists, Hong Kong, 2011.
- S. Jain, K. R. Seeja, and R. Jindal, "A fuzzy ontology framework in information retrieval using semantic query expansion", International Journal of Information Management Data Insights, 1 (1), 2021.
- I. Rajasekaran, M. Govindan, N. Divakarla, R. K. Naga Satya, et al. "Fuzzy rule based ontology reasoning. ", Ambient Intell Human Comput 12, 2021, pp. 6029-6035
- C. S. Lee, M. H. Wang, H. Hagras, "A type-2 fuzzy ontology and its application to personal diabetic-diet recommendation. ", IEEE Transactions on875Fuzzy Systems 18 (2), 2010, pp. 374-395.
- F. Zhang, J. Cheng, and Z. Ma, "A survey on fuzzy ontologies for the Semantic Web. ", The Knowledge Engineering Review, 31 (3), 2016, pp. 278-321.
- J. Gomez-Romero, F. Bobillo, M. Ros, M. Molina-Solana, M. D. Ruiz, and M. J. Martin-Bautista, "A fuzzy extension of the semantic building information model. ", Automation in Construction, 57, 2015, pp. 202-212.
- F. Bobillo and U. Straccia, "The fuzzy ontology reasoner fuzzyD", Knowledge-Based Systems 95 (1), 2016, pp. 12-34
- I. Huitzil, M. Molina-Solana, J. Gomez-Romero, and F. Bobillo, "Minimalistic fuzzy ontology reasoning: An application to Building Information Modeling", Applied Soft Computing, 103, 2021, pp. 107-158
- S. Borgwardt, and R. Penaloza, "Reasoning in fuzzy description logics using automata. ", Fuzzy Sets and Systems, 298, 2016, pp. 22-43.
- F. Bobillo, P. C. G. da Costa, C. d'Amato, N. Fanizzi, K. Laskey, K. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool, editors, Uncertainty Reasoning for the Semantic Web II, volume 7123 of LNCS, pages 119-138, Springer, 2013.
- J. Zhu, G. Qi and B. Suntisrivaraporn, "Tableaux Algorithms for Expressive Possibilistic Description Logics. ", in IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies, 2013
- F. Baader, S. Borgwardt, and R. Penaloza, "Decidability and complexity of fuzzy description logics. ", KI-Kunstliche Intelligenz, 31, 2017, pp. 85-90.
- U. Straccia, "Foundations of fuzzy logic and semantic web languages. ", Taylor & Francis, 2013.
- I. Qasim, M. Alam, S. Khan, A. W. Khan, K. M. Malik, M. Saleem, and S. A. C. Bukhari, "A comprehensive review of type-2 fuzzy ontology. ", Artificial Intelligence Review, 53 (2), 2020, pp. 1187-1206.
- F. Bobillo, M. Delgado, and J. Gómez-Romero. "Reasoning in fuzzy OWL 2 with DeLorean. ", In International Workshop on Uncertainty Reasoning for the Semantic Web (pp. 119-138). Berlin, Heidelberg: Springer Berlin Heidelberg.
- F. Bobillo, M. Delgado, and J. Gomez-Romero, "DeLorean: A reasoner for fuzzy OWL 2. ", Expert Systems with Applications, 39 (1), 2012, pp. 258-272.
Issue
| 2024 38th International Conference on Information Technologies, InfoTech 2024 - Proceedings, 2024, , https://doi.org/10.1109/InfoTech63258.2024.10701323 |
|