Autors: Banchelli L., Todorov, G. D., Stavrov V., Ganev, B. T., Todorov, T. S.
Title: Investigating a Detection Method for Viruses and Pathogens Using a Dual-Microcantilever Sensor
Keywords: microcantilever, piezoresistor, SARS-CoV-2, vibration, virus detection

Abstract: Piezoresistive microcantilever sensors for the detection of viruses, pathogens, and trace chemical gasses, with appropriate measurement and signal processing methods, can be a powerful instrument with high speed and sensitivity, with in situ and real-time capabilities. This paper discusses a novel method for mass sensing on the order of a few femtograms, using a dual-microcantilever piezoresistive sensor with a vibrating common base. The two microcantilevers have controllably shifted natural frequencies with only one of them being active. Two active piezoresistors are located on the surfaces of each of the two flexures, which are specifically connected in a Wheatstone bridge with two more equivalent passive resistors located on the sensor base. A dedicated experimental system measures the voltages of the two half-bridges and, after determining their amplitude–frequency responses, finds the modulus of their differences. The modified amplitude–frequency response possesses a cusp point which is a function of the natural frequencies of the microcantilevers. The signal processing theory is derived, and experiments are carried out on the temperature variation in the natural frequency of the active microcantilever. Theoretical and experimental data of the temperature–frequency influence and equivalent mass with the same impact are obtained. The results confirm the sensor’s applicability for the detection of ultra-small objects, including early diagnosis and prediction in microbiology, for example, for the presence of SARS-CoV-2 virus, other viruses, and pathogens. The versatile nature of the method makes it applicable to other fields such as medicine, chemistry, and ecology.

References

  1. Yen Y.-K. Lai Y.-C. Hong W.-T. Pheanpanitporn Y. Chen C.-S. Huang L.-S. Electrical Detection of C-Reactive Protein Using a Single Free-Standing, Thermally Controlled Piezoresistive Microcantilever for Highly Reproducible and Accurate Measurements Sensors 2013 13 9653 9668 10.3390/s130809653 23899933
  2. Hansen K.M. Ji H.-F. Wu G. Datar R. Cote R. Majumdar A. Thundat T. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches Anal. Chem. 2001 73 1567 1571 10.1021/ac0012748 11321310
  3. Tian X. Tao J. Xu M. Lin Y. Zhao J. Design and Simulation of an Ultra-Low-Power Hydrogen Sulfide Gas Sensor with a Cantilever Structure Micromachines 2024 15 295 10.3390/mi15030295 38542542
  4. Chen Z. Cai G. Li Y. Chen Q. Wu W. Performances and improvement of coupled dual-microcantilevers in sensitivity Sens. Actuators A Phys. 2019 288 117 124 10.1016/j.sna.2019.01.023
  5. Tang L. Xu P. Li M. Yu H. Li X. H2S gas sensor based on integrated resonant dual-microcantilevers with high sensitivity and identification capability Chin. Chem. Lett. 2020 31 2155 2158 10.1016/j.cclet.2020.01.018
  6. Xin W. He Z. Zhao C. Design and Experimental Evaluation of a Dual-Cantilever Piezoelectric Film Sensor with a Broadband Response and High Sensitivity Micromachines 2023 14 2108 10.3390/mi14112108 38004964
  7. Agarwal D.K. Nandwana V. Henrich S.E. Josyula V.P.V.N. Thaxton C.S. Qi C. Simons L.S. Hultquist J.F. Ozer E.A. Shekhawat G.S. et al. Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform Biosens. Bioelectron. 2022 195 113647 10.1016/j.bios.2021.113647
  8. Hawari H.F. Wahab Y. Azmi M.T. Shakaff A.Y. Hashim U. Johari S. Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing Proceedings of the 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014) Indonesia, Jakarta 13–14 January 2014
  9. Wideband F.T. low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy Rev. Sci. Instrum. 2009 80 023707
  10. Pedrak R. Ivanov T. Ivanova K. Gotszalk T. Abedinov T. Rangelow I.W. Edinger E. Tomerov E. Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes J. Vac. Sci. Technol. B 2003 21 3102 3107 10.1116/1.1614252
  11. Jani N. Chakraborty G. Parametric Resonance in Cantilever Beam with Feedback-Induced Base Excitation J. Vib. Eng. Technol. 2021 9 291 301 10.1007/s42417-020-00226-1
  12. Wang X.D. Li N. Wang T. Liu M.W. Wang L.D. Dynamic characteristic testing for MEMS micro-devices with base excitation Meas. Sci. Technol. 2007 18 1740 10.1088/0957-0233/18/6/S12
  13. Zhou J. Li P. Zhang S. Huang Y. Yang P. Bao M. Ruan G. Self-excited piezoelectric microcantilever for gas detection Microelectron. Eng. 2003 69 37 46 10.1016/S0167-9317(03)00227-2
  14. Napoli M. Bamieh B. Turner K. A Capacitive Microcantilever: Modelling, Validation, and Estimation Using Current Measurements J. Dyn. Syst. Meas. Control 2004 126 319 326 10.1115/1.1767851
  15. Zhao R. Boudou T. Wang W.-G. Chen C.S. Reich D.H. Decoupling Cell and Matrix Mechanics in Engineered Microtissues Using Magnetically Actuated Microcantilevers Adv. Mater. 2013 25 1699 1705 10.1002/adma.201203585
  16. Zhang H. Yang S. Zeng J. Li X. Chuai R. A Genosensor Based on the Modification of a Microcantilever: A Review Micromachines 2023 14 427 10.3390/mi14020427
  17. To C.W.S. Vibration of a Cantilever Beam with a Base Exitation and Tip Mass J. Sound Vib. 1982 83 445 460 10.1016/S0022-460X(82)80100-4
  18. Repetto C.E. Roatta A. Welti R.J. Forced vibrations of a cantilever beam Eur. J. Phys. 2012 33 1187 1195 10.1088/0143-0807/33/5/1187
  19. Lai W.P. Fang W. A novel antistiction method using harmonic excitation on the microstructure J. Vac. Sci. Technology. A Vac. Surf. Film. 2001 19 1224 10.1116/1.1353542
  20. Lobontiu N. Garcia E. Two Microcantilever Designs: Lumped-Parameter Model for Static and Modal Analysis J. Microelectromechanical Syst. 2004 13 41 50 10.1109/JMEMS.2003.823239
  21. Stavrov V. Stavreva G. Tomerov E. Tester for Detection of Infectious Agents in Fluid Bulgarian Patent BG113123A 16 April 2020
  22. Banchelli L.F. Ganev B.T. Todorov T.S. Sustainability Validation of a LabVIEW Based System for Biomarkers Detection Proceedings of the XXXII International Scientific Conference Electronics—ET2023 Sozopol, Bulgaria 13–15 September 2023
  23. Theoretical Background of SPM, 2.1.2 Deflections under the Vertical (Normal) Force Component, NT-MDT Spectrum Instruments 2024 Available online: https://www.ntmdt-si.com/resources/spm-theory/theoretical-background-of-spm/2-scanning-force-microscopy-(sfm)/21-cantilever/212-deflections-under-the-vertical-normal-force-component (accessed on 29 August 2024)
  24. Liu C. Foundations of MEMS 2nd ed. Prentice Hall Boston, MA, USA 2011
  25. Allen J.J. Micro Electro Mechanical System Design Taylor & Francis Group, LLC London, UK 2005
  26. Lindroos V. Tilli M. Lehto A. Motooka T. Handbook of Silicon Based MEMS Materials and Technologies Elsevier Inc. Oxford, UK 2010
  27. Smith C.S. Piezoresistance effect in germanium and silicon germanium and silicon Phys. Rev. 1954 94 42 49 10.1103/PhysRev.94.42
  28. Hall J.J. Electronic Effects in the Elastic Constants of “n”-Type Silicon Phys. Rev. 1967 161 756 761 10.1103/PhysRev.161.756
  29. Sarma M.S. Introduction to Electrical Engineering Oxford University Press, Inc. New York, NY, USA 2001
  30. RedPitaya, “STEMlab 125-14 Low Bare OEM,” Red Pitaya 2024 Available online: https://redpitaya.com/product/stemlab-125-14-low-noise-bare-oem/ (accessed on 10 July 2024)
  31. Jiang B. Huang S. Zhang J. Su Y. Analysis of Frequency Drift of Silicon MEMS Resonator with Temperature Micromachines 2021 12 26 10.3390/mi12010026 33383860
  32. Zhang R.X. Fisher T. Raman A. Sands T.D. Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy Nanoscale Microscale Thermophys. Eng. 2009 13 243 252 10.1080/15567260903277039
  33. Silva M.A.S. Fernandes T.S. Sombra S. An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf) J. Appl. Phys. 2012 112 07410 10.1063/1.4755799
  34. National Instruments Corp “NI TDMS File Format—What Is a TDMS File?” NI 2024 Available online: https://www.ni.com/en/support/documentation/supplemental/06/the-ni-tdms-file-format.html (accessed on 4 August 2024)
  35. Meirovitch L. Elements of Vibration Analysis 2nd ed. McGraw-Hill Boston, MA, USA 1986
  36. Rao S.S. Vibration of Continuous Systems John Wiley & Sons, Inc. Miami, FL, USA 2007
  37. Voltera E. Zachmanoglou E.C. Dynamics of Vibrations Charles E. Merrill Books, Inc. Columbus, OH, USA 1965
  38. Whitney S. Vibrations of Cantilever Beams: Deflection, Frequency, and Research Uses 1999 Available online: https://emweb.unl.edu/Mechanics-Pages/Scott-Whitney/325hweb/Beams.htm (accessed on 28 August 2024)
  39. Sender R. Bar-On Y.M. Gleizer S. Bernsthein B. Flamholz A. Phillips R. Milo R. The total number and mass of SARS-CoV-2 virions Proc. Natl. Acad. Sci. USA 2021 118 e2024815118 10.1073/pnas.2024815118
  40. Ym B.-O. Flamholz A. Phillips R. SARS-CoV-2 (COVID-19) by the numbers Elife 2020 2 e57309

Issue

Micromachines, vol. 15, 2024, , https://doi.org/10.3390/mi15091117

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science