Autors: Ivanova D.K., Stefanov, B. I., Kaneva N.V.
Title: A Highly Efficient Tribocatalysis of La/ZnO Powders for Degradation of Rhodamine B
Keywords: lanthanum ions, tribocatalysis, ZnO powder

Abstract: Tribocatalysis is a promising environmental remediation technique that utilizes the triboelectric effect, produced when dissimilar materials interact through friction, to generate charges promoting catalytic reactions. In this work, the tribocatalytic degradation of an organic dye—Rhodamine B (RhB)—has been experimentally realized using pure and 2 mol.% La-modified/ZnO powders, synthesized via a simple hydrothermal method. The effects of annealing on the tribocatalytic activity of the La/ZnO catalysts are also studied at 100 and 500 °C. The La/ZnO-modified catalysts showed an enhanced RhB degradation efficiency with 92% removal within 24 h, compared to only 58% for the pure ZnO. The effects of annealing were found to be detrimental, with RhB removal efficiencies dropping from 92 to 69% in the 100–500 °C range. The catalysts’ cycling stability was found to be excellent within three cycles. Ultimately, it is demonstrated that by utilizing La/ZnO powders, contaminated wastewater can be efficiently treated through employing tribocatalysis.

References

  1. Jamil T. Role of advance oxidation processes (AOPs) in textile wastewater treatment: A critical review Desalin. Water Treat. 2024 318 100387 10.1016/j.dwt.2024.100387
  2. Ewuzie U. Saliu O. Dulta K. Ogunniyi S. Bajeh A. Iwuozor K. Ighalo J. A review on treatment technologies for printing and dyeing wastewater (PDW) J. Water Process. Eng. 2022 50 103273 10.1016/j.jwpe.2022.103273
  3. Dong H. Zhou Y. Wang L. Chen L. Zhu M. Oxygen vacancies in piezocatalysis: A critical review Chem. Eng. J. 2024 487 150480 10.1016/j.cej.2024.150480
  4. Zhong S. Wang Y. Chen Y. Jiang X. Lin M. Lin C. Lin T. Gao M. Zhao C. Wu X. Improved piezo-photocatalysis for aquatic multi-pollutant removal via BiOBr/BaTiO3heterojunction construction Chem. Eng. J. 2024 488 151002 10.1016/j.cej.2024.151002
  5. Liu X. Wang T. Li G. Liu G. Qiu J. Guo Z. Hao H. Dong J. Liu H. Xing J. Cooperation or competition between piezocatalysis and photocatalysis of Bi4Ti3O12nanoflakes J. Alloys Compd. 2023 936 168367 10.1016/j.jallcom.2022.168367
  6. Kumar M. Kebaili I. Vaish R. El Ghoul J. Khandaker M. Ball mill-induced piezocatalysis assessment for dye degradation using BiVO4Mater. Today Commun. 2023 37 107306 10.1016/j.mtcomm.2023.107306
  7. Djilani C. Zaghdoudi R. Djazi F. Bouchekima B. Lallam A. Modarressi A. Rogalski M. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon J. Taiwan Inst. Chem. Eng. 2015 53 112 121 10.1016/j.jtice.2015.02.025
  8. Singh A. Pal D.B. Mohammad A. Alhazmi A. Haque S. Yoon T. Srivastava N. Gupta V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight Bioresour. Technol. 2022 343 126154 10.1016/j.biortech.2021.126154 34673196
  9. Li Z. Zhang Q. Wang L. Yang J. Wu Y. He Y. Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy Ultrason. Sonochem. 2021 78 105729 10.1016/j.ultsonch.2021.105729
  10. Tudor M. Borlan R. Maniu D. Astilean S. de la Chapelle M.L. Focsan M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies Sci. Total Environ. 2024 932 172792 10.1016/j.scitotenv.2024.172792
  11. Yang F. Wang P. Hao J. Qu J. Cai Y. Yang X. Li C. Hu J. Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting Nano Energy 2023 118 108993 10.1016/j.nanoen.2023.108993
  12. Jabbar Z. Graimed B. Ammar S. Sabit D. Najim A. Radeef A. Taher A. The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations Mater. Sci. Semicond. Process 2024 173 108153 10.1016/j.mssp.2024.108153
  13. Lee D. Kim M. Danish M. Jo M. State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation Catal. Commun. 2023 183 106764 10.1016/j.catcom.2023.106764
  14. Wang J. Hu J. Lu X. Jiang X. Li J. Liu A. Lu Z. Xie J. Cao Y. Molecular scale influence mechanism of reaction raw materials on catalyst particle size and its piezoelectric catalytic performance Ceram. Int. 2024 50 5285 5292 10.1016/j.ceramint.2023.11.279
  15. Yue J. Wu R. Zhang Y. Zhang N. Jing H. Wei S. Ouyang F. The piezoelectric field-induced rearrangement of free carriers unlocks the high redox ability of 1T@2H-MoS2/Bi2S3piezoelectric catalyst Appl. Surf. Sci. 2023 623 157033 10.1016/j.apsusc.2023.157033
  16. Liang Z. Yan C.F. Rtimi S.M. Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook Appl. Catal. B Environ. 2019 241 256 269 10.1016/j.apcatb.2018.09.028
  17. Lin E.Z. Kang Z.H. Wu J. Huang R. Qin N. Bao D.H. BaTiO3nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism Appl. Catal. B Environ. 2021 285 119823 10.1016/j.apcatb.2020.119823
  18. Liu N. Wang R. Gao S. Zhang R. Fan F. Ma Y. Luo X. Ding D. Wu W. High-Performance Piezo-Electrocatalytic Sensing of Ascorbic Acid with Nanostructured Wurtzite Zinc Oxide Adv. Mat. 2021 33 2105697 10.1002/adma.202105697 34935214
  19. Ning X. Hao A. Cao Y. Hu J. Xie J. Jia D. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism J. Coll. Int. Sci. 2020 577 290 299 10.1016/j.jcis.2020.05.082
  20. Jiang B. Xue X. Mu Z. Zhang H. Li F. Liu K. Wang W. Zhang Y. Li W. Yang C. et al. Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition Molecules 2022 27 8579 10.3390/molecules27238579
  21. Sharma A. Bhardwaja U. Kushwaha H. ZnO hollow pitchfork: Coupled photo-piezocatalytic mechanism for antibiotic and pesticide elimination Catal. Sci. Technol. 2022 12 812 822 10.1039/D1CY01973B
  22. Porwal C. Sharma M. Vaish R. Chauhan V. Ahmed S. Hwang W. Park H. Sung T. Kumar A. Piezocatalytic dye degradation using Bi2O3-ZnO-B2O3glass-nanocomposites J. Mater. Res. Technol. 2022 21 2028 2037 10.1016/j.jmrt.2022.10.041
  23. Zhang Q. Jia Y. Chen J. Wang X. Zhang L. Chen Z. Wu Z. Strongly enhanced piezocatalysis of BiFeO3/ZnO heterostructure nanomaterials N. J. Chem. 2023 47 3471 3480 10.1039/D2NJ05732H
  24. Li P.C. Wu J. Wu Z. Jia M.Y. Ma J.P. Chen W.P. Zhang L.H. Yang J. Liu Y.S. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles Nano Energy 2019 63 103832 10.1016/j.nanoen.2019.06.028
  25. Zhao B. Chen N. Xue Y. Shi H. Xu H. Li M. Sun C. Xing Y. Gao B. Ma B. Challenges and perspectives of tribocatalysis in the treatment for dye wastewater J. Water Process Eng. 2024 63 105455 10.1016/j.jwpe.2024.105455
  26. Chong J. Tai B. Zhang Y. Iridoparalysis effect based on ZnO with various specific surface areas for dye degradation Chem. Phys. Lett. 2024 835 140998 10.1016/j.cplett.2023.140998
  27. Huynh K. Tieu A. Lu C. Smillie L. Nguyen C. Pham S. In-situ engineering catalytically active surfaces for tribocatalysis with layered double hydroxide nanoparticles Carbon 2024 228 119324 10.1016/j.carbon.2024.119324
  28. Gaur A. Moharana A. Porwal C. Chauhan V. Vaish R. Degradation of organic dyes by utilizing CaCu3Ti4O12(CCTO) nanoparticles via tribocatalysis process J. Ind. Eng. Chem. 2024 129 341 351 10.1016/j.jiec.2023.08.048
  29. Li X. Tong W. Song W. Shi J. Zhang Y. Performance of tribocatalysis and tribo-photocatalysis of pyrite under agitation J. Clean. Prod. 2023 414 137566 10.1016/j.jclepro.2023.137566
  30. Henniker J. Triboelectricity in Polymers Nature 1962 196 474 10.1038/196474a0
  31. Zhao J. Chen L. Luo W. Li H. Wu Z. Xu Z. Zhang Y. Zhang H. Yuan G. Gao J. et al. Strong tribo-catalysis of zinc oxide nanorods via triboelectrically harvesting friction energy Ceram. Int. 2020 46 25293 25298 10.1016/j.ceramint.2020.06.322
  32. Yang B. Chen H. Guo X. Wang L. Xu T. Bian J. Yang Y. Liu Q. Du Y. Lou X. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation J. Mater. Chem. C 2020 8 14845 14854 10.1039/D0TC03519J
  33. Ruan L. Jia Y. Guan J. Xue B. Huang S. Wang Z. Fu Y. Wu Z. Tribo-electro-catalytic dye degradation driven by mechanical friction using MOF-derived NiCo2O4double-shelled nanocages J. Clean. Prod. 2022 345 131060 10.1016/j.jclepro.2022.131060
  34. Xu Y. Yin R. Zhang Y. Zhou B. Sun P. Dong X. Unveiling the mechanism of frictional catalysis in water by Bi12TiO20: A charge transfer and contaminant decomposition path study Langmuir 2022 38 14153 14161 10.1021/acs.langmuir.2c02093 36342371
  35. Ada K. Gökgöz M. Önal M. Sarıkaya Y. Preparation and characterization of a ZnO powder with the hexagonal plate particles Powder Technol. 2008 181 285 291 10.1016/j.powtec.2007.05.015
  36. Kumar S. Kavitha R. Lanthanide ions doped ZnO based photocatalysts Sep. Purif. Technol. 2021 274 118853 10.1016/j.seppur.2021.118853
  37. Tsuji T. Terai Y. Kamarudin M. Kawabata M. Fujiwara Y. Photoluminescence properties of Sm-doped ZnO grown by sputtering-assisted metalorganic chemical vapor deposition J. Non Cryst. Solids 2012 358 2443 2445 10.1016/j.jnoncrysol.2011.12.099
  38. Khatamian M. Khandar A. Divband B. Haghighi M. Ebrahimiasl S. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+or Sm3+) doped ZnO nanoparticles J. Mol. Catal. A Chem. 2012 365 120 127 10.1016/j.molcata.2012.08.018
  39. Anandan S. Vinu A. Lovely K. Gokulakrishnan N. Srinivasu P. Mori T. Murugesan V. Sivamurugan V. Ariga K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension J. Mol. Catal. A Chem. 2007 266 149 157 10.1016/j.molcata.2006.11.008
  40. Duan L. Wang B. Heck K. Clark C. Wei J. Wang M. Metz J. Wu G. Tsai A. Guo S. et al. Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid Chem. Eng. J. 2022 448 137735 10.1016/j.cej.2022.137735
  41. Korake P. Dhabbe R. Kadam A. Gaikwad Y. Garadkar K. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox J. Photochem. Photobiol. B Biol. 2014 130 11 19 10.1016/j.jphotobiol.2013.10.012 24231392
  42. Lei H. Cui X. Jia X. Qi J. Wang Z. Chen W. Enhanced Tribocatalytic Degradation of Organic Pollutants by ZnO Nanoparticles of High Crystallinity Nanomaterials 2023 13 46 10.3390/nano13010046 36615955
  43. Sydorchuk V. Poddubnaya O.I. Tsyba M.M. Zakutevskyy O. Khyzhun O. Khalameida S. Puziy A.M. Activated carbons with adsorbed cations as photocatalysts for pollutants degradation in aqueous medium Adsorption 2019 25 267 278 10.1007/s10450-018-00006-0
  44. Gan P.P. Li S.F.Y. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process Chem. Eng. J. 2013 229 351 363 10.1016/j.cej.2013.06.020
  45. Wu M. Xu Y. He Q. Sun P. Weng X. Dong X. Tribocatalysis of homogeneous material with multi-size granular distribution for degradation of organic pollutants J. Colloid Int. Sci. 2022 622 602 611 10.1016/j.jcis.2022.04.132 35526416

Issue

Catalysts, vol. 14, pp. 527, 2024, , https://doi.org/10.3390/catal14080527

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science