Autors: Ivanova D., Kolev H., Stefanov, B. I., Kaneva N.
Title: Enhanced Tribodegradation of a Tetracycline Antibiotic by Rare-Earth-Modified Zinc Oxide
Keywords: doxycycline, rare earths, tribocatalysis, water remediation, zinc oxide powder

Abstract: Tribocatalysis is an emerging advanced oxidation process that utilizes the triboelectric effect, based on friction between dissimilar materials to produce charges that can initiate various catalytic reactions. In this study, pure and rare-earth-modified ZnO powders (La2O3, Eu2O3, 2 mol %) were demonstrated as efficient tribocatalysts for the removal of the tetracycline antibiotic doxycycline (DC). While the pure ZnO samples achieved 49% DC removal within 24 h at a stirring rate of 100 rpm, the addition of Eu2O3 increased the removal efficiency to 67%, and La2O3-modified ZnO powder exhibited the highest removal efficiency, reaching 80% at the same stirring rate. Additionally, increasing the stirring rate to 300 and 500 rpm led to 100% DC removal in the ZnO/La case within 18 h, with the pronounced effect of the stirring rate confirming the tribocatalytic effect. All tribocatalysts exhibited excellent recycling properties, with less than a 3% loss of activity over three cycles. Furthermore, a scavenger assay confirmed the importance of superoxide radical generation for the overall reaction rate. The results of this investigation indicate that the rare-earth-modified ZnO tribocatalysts can effectively utilize mechanical energy to decompose pollutants in contaminated water.

References

  1. Amaechi I. Youssef A. Dorfler A. Gonzalez Y. Katoch R. Ruediger A. Catalytic Applications of Non-Centrosymmetric Oxide Nanomaterials Angew. Chem. Int. Ed. Engl. 2022 61 e202207975 10.1002/anie.202207975 35871611
  2. Das R. Vecitis C. Schulze A. Cao B. Ismail A. Lu X. Chen J. Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring Chem. Soc. Rev. 2017 46 6946 7020 10.1039/C6CS00921B
  3. Jeon I. Ryberg E. Alvarez P. Kim J. Technology assessment of solar disinfection for drinking water treatment Nat. Sustain. 2022 5 801 808 10.1038/s41893-022-00915-7
  4. Alsharyani A. Muruganandam L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator RSC Adv. 2024 14 9038 9049 10.1039/D4RA00672K 38500622
  5. Huang H. Wang H. Jiang W. Solar-driven Bi6O5(OH)3(NO3)5(H2O)3/Bi2WO6heterojunction for efficient degradation of organic pollutants: Insights into adsorption mechanism, charge transfer and degradation pathway Sep. Purif. Technol. 2024 349 127747 10.1016/j.seppur.2024.127747
  6. Olasupo A. Corbin D. Shiflett M. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants J. Hazard. Mater. 2024 468 133830 10.1016/j.jhazmat.2024.133830 38387180
  7. Chen X. Wang J. Wang Z. Xu H. Liu C. Huo B. Meng F. Wang Y. Sun C. Low-frequency mechanical energy in the environment for energy production and piezocatalytic degradation of organic pollutants in water: A review J. Water Process Eng. 2023 56 104312 10.1016/j.jwpe.2023.104312
  8. Verma A. Fu Y. The prospect of CuxO-based catalysts in photocatalysis: From pollutant degradation, CO2reduction, and H2production to N2fixation Environ. Res. 2024 241 117656 10.1016/j.envres.2023.117656
  9. Kumar A. Rana S. Sharma G. Dhiman P. Shekh M. Stadler F. Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production J. Environ. Chem. Eng. 2023 11 110770 10.1016/j.jece.2023.110770
  10. Xu H. Yang H. Zhou J. Yin Y. A Route Choice Model with Context-Dependent Value of Time Transp. Sci. 2017 51 536 548 10.1287/trsc.2016.0710
  11. Li P. Tang C. Xiao X. Jia Y. Chen W. Flammable gases produced by TiO2nanoparticles under magnetic stirring in water Friction 2021 10 1127 1133 10.1007/s40544-021-0505-5
  12. Cui X. Li P. Lei H. Tu C. Wang D. Wang Z. Chen W. Greatly enhanced tribocatalytic degradation of organic pollutants by TiO2nanoparticles through efficiently harvesting mechanical energy Sep. Purif. Technol. 2022 289 120814 10.1016/j.seppur.2022.120814
  13. Hu J. Ma W. Pan Y. Chen Z. Zhang Z. Wan C. Resolving the Tribocatalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation J. Colloid Interface Sci. 2022 607 1908 1918 10.1016/j.jcis.2021.09.161 34798707
  14. Fan F. Xie S. Wang G. Tian Z. Tribocatalysis: Challenges and perspectives Sci. China Chem. 2021 64 1609 1613 10.1007/s11426-021-1089-6
  15. Geng L. Qian Y. Song W. Bao L. Enhanced tribocatalytic pollutant degradation through tuning oxygen vacancy in BaTiO3nanoparticles Appl. Surf. Sci. 2023 637 157960 10.1016/j.apsusc.2023.157960
  16. Wu J. Qin N. Bao D. Effective enhancement of piezocatalytic activity of BaTiO3nanowires under ultrasonic vibration Nano Energy 2018 45 44 51 10.1016/j.nanoen.2017.12.034
  17. Feng Y. Ling L. Wang Y. Xu Z. Cao F. Li H. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis Nano Energy 2017 40 481 486 10.1016/j.nanoen.2017.08.058
  18. Yang B. Chen H. Guo X. Wang L. Xu T. Bian J. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation J. Mater. Chem. C 2020 8 14845 14854 10.1039/D0TC03519J
  19. Li P. Wu J. Wu Z. Jia Y. Ma J. Chen W. Zhang L. Yang J. Liu Y. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles Nano Energy 2019 63 103832 10.1016/j.nanoen.2019.06.028
  20. Zhao J. Chen L. Luo W. Li H. Wu Z. Xu Z. Zhang Y. Zhang H. Yuan G. Gao J. et al. Strong Tribo-Catalysis of Zinc Oxide Nanorods Via Triboelectrically-Harvesting Friction Energy Ceram. Int. 2020 46 25293 25298 10.1016/j.ceramint.2020.06.322
  21. Sun S. Sui X. Yu H. Zheng Y. Zhu X. Wu X. Li Y. Lin Q. Zhang Y. Ye W. et al. High Tribocatalytic Performance of FeOOH Nanorods for Degrading Organic Dyes and Antibiotics Small Methods 2024 2301784 10.1002/smtd.202301784 38415975
  22. Li X. Tong W. Song W. Shi J. Zhang Y. Performance of tribocatalysis and tribo-photocatalysis of pyrite under agitation J. Clean. Prod. 2023 414 137566 10.1016/j.jclepro.2023.137566
  23. Kaneva N. Bojinova A. Papazova K. Dimitrov D. Photocatalytic purification of dye contaminated sea water by lanthanide (La3+, Ce3+, Eu3+) modified ZnO Catal. Today 2015 252 113 119 10.1016/j.cattod.2014.12.008
  24. Qu G. Fan G. Zhou M. Rong X. Li T. Zhang R. Sun J. Chen D. Graphene-Modified ZnO Nanostructures for Low-Temperature NO2Sensing ACS Omega 2019 4 4221 4232 10.1021/acsomega.8b03624
  25. Zhao S. Shen Y. Li A. Chen Y. Gao S. Liu W. Wei D. Effects of rare earth elements doping on gas sensing properties of ZnO nanowires Ceram. Int. 2021 47 24218 24226 10.1016/j.ceramint.2021.05.133
  26. Jia T. Wang W. Long F. Fu Z. Wang H. Zhang Q. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires J. Alloys Compd. 2009 484 410 415 10.1016/j.jallcom.2009.04.153
  27. Ada K. Gökgöz M. Önal M. Sarıkaya Y. Preparation and characterization of a ZnO powder with the hexagonal plate particles Powder Technol. 2008 181 285 291 10.1016/j.powtec.2007.05.015
  28. Kumar S. Kavitha R. Lanthanide ions doped ZnO based photocatalysts Sep. Purif. Technol. 2021 274 118853 10.1016/j.seppur.2021.118853
  29. Tsuji T. Terai Y. Kamarudin M. Kawabata M. Fujiwara Y. Photoluminescence properties of Sm-doped ZnO grown by sputtering-assisted metalorganic chemical vapor deposition J. Non-Cryst. Solids 2012 358 2443 2445 10.1016/j.jnoncrysol.2011.12.099
  30. Khatamian M. Khandar A. Divband B. Haghighi M. Ebrahimiasl S. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+or Sm3+) doped ZnO nanoparticles J. Mol. Catal. A Chem. 2012 365 120 127 10.1016/j.molcata.2012.08.018
  31. Peleš A. Pavlović V.P. Filipović S. Obradović N. Mančić L. Krstić J. Mitrić M. Vlahović B. Rašić G. Kosanović D. et al. Structural investigation of mechanically activated ZnO powder J. Alloys Compd. 2015 648 971 979 10.1016/j.jallcom.2015.06.247
  32. Xu Y. Yin R. Zhang Y. Zhou B. Sun P. Dong X. Unveiling the Mechanism of Frictional Catalysis in Water by Bi12TiO20: A Charge Transfer and Contaminant Decomposition Path Study Langmuir 2022 38 14153 14161 10.1021/acs.langmuir.2c02093 36342371
  33. Che J. Gao Y. Wu Z. Ma J. Wang Z. Liu C. Jia Y. Wang X. Review on tribocatalysis through harvesting friction energy for mechanically-driven dye decomposition J. Alloys Compd. 2024 1002 175413 10.1016/j.jallcom.2024.175413
  34. Li X. Tong W. Shi J. Chen Y. Zhang Y. An Q. Tribocatalysis mechanisms: Electron transfer and transition J. Mater. Chem. A 2023 11 4458 4472 10.1039/D2TA08105A
  35. Soares A. Araujo F. Osajima J. Guerra Y. Viana B. Peña-Garcia R. Nanotubes/nanorods-like structures of La-doped ZnO for degradation of Methylene Blue and Ciprofloxacin J. Photochem. Photobiol. A Chem. 2024 447 115235 10.1016/j.jphotochem.2023.115235
  36. Campos S. Calzadilla W. Salazar-González R. Venegas-Yazigi D. León J. Fuentes S. Photocatalytic activity of barium titanate composites with zinc oxide doped with lanthanide ions for sulfamethoxazole degradation J. Environ. Chem. Eng. 2024 12 112938 10.1016/j.jece.2024.112938
  37. Duffy J. Trends in energy gaps of binary compounds: An approach based upon electron transfer parameters from optical spectroscopy J. Phys. C Solid State Phys. 1980 13 2979 2989 10.1088/0022-3719/13/16/008
  38. Wang Y. Shen S. Liu M. He G. Li X. Enhanced tribocatalytic degradation performance of organic pollutants by Cu1.8S/CuCo2S4p-n junction J. Colloid Interface Sci. 2024 655 187 198 10.1016/j.jcis.2023.10.164 37939403
  39. Anandan S. Vinu A. Lovely K. Gokulakrishnan N. Srinivasu P. Mori T. Murugesan V. Sivamurugan V. Ariga K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension J. Mol. Catal. A Chem. 2007 266 149 157 10.1016/j.molcata.2006.11.008
  40. Korake P. Dhabbe R. Kadam A. Gaikwad Y. Garadkar K. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox J. Photochem. Photobiol. B Biol. 2014 130 11 19 10.1016/j.jphotobiol.2013.10.012
  41. Zhao J. Dang Z. Muddassir M. Raza S. Zhong A. Wang X. Jin J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes Molecules 2023 28 6848 10.3390/molecules28196848 37836691
  42. Xiang R. Zhou C. Liu Y. Qin T. Li D. Dong X. Muddassir M. Zhong A. A new type Co(II)-based photocatalyst for the nitrofurantoin antibiotic degradation J. Mol. Struct. 2024 1312 138501 10.1016/j.molstruc.2024.138501
  43. Chopra I. Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance Microbiol. Mol. Biol. Rev. 2001 65 232 260 10.1128/MMBR.65.2.232-260.2001
  44. Thomas M. Nałęcz-Jawecki G. Giebułtowicz J. Drzewicz P. Degradation of oxytetracycline by ferrate (VI): Treatment optimization, UHPLC-MS/MS and toxicological studies of the degradation products, and impact of urea and creatinine on the removal Chem. Eng. J. 2024 485 149802 10.1016/j.cej.2024.149802

Issue

Molecules, vol. 29, pp. 3913, 2024, , https://doi.org/10.3390/molecules29163913

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science