Autors: Donkov S., Stefanov, I. Ж., Veltchev T.V., Klessen R.S.
Title: Density profile of a self-gravitating polytropic turbulent fluid in a rotating disc near to the cloud core
Keywords: accretion, accretion discs, ISM: clouds, ISM: structure, methods: analytical

Abstract: Published by Oxford University Press on behalf of Royal Astronomical Society.We obtain two equations (following from two different approaches) for the density profile in a self-gravitating polytropic cylindrically symmetric and rotating turbulent gas disc. The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state of the gas changes from isothermal (in the outer cloud layers) to one of ‘hard polytrope’, and the symmetry changes from spherical to cylindrical. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation describes the balance of the kinetic, thermal, and gravitational energy of a fluid element. We also introduce a method for approximating density profile solutions (in a power-law form), leading to the emergence of three different regimes. We apply, as well, dynamical analysis of the motion of a fluid element. Only one of the regimes is in accordance with the two approaches (energy and force balance). It corresponds to a density profile of a slope −2, polytropic exponent 3/2, and sub-Keplerian rotation of the disc, when the gravity is balanced by the thermal pressure. It also matches with some observations and numerical works and, in particular, leads to a second power-law tail (of a slope ∼−1) of the density distribution function in dense, self-gravitating cloud regions.

References

  1. Andrews S., Terrell M., Tripathi A., Ansdell M., Williams J., Wilner D., 2018, ApJ, 865, 157
  2. Andrews S. et al. 2018, ApJ, 869, L41
  3. Ballesteros-Paredes J., Hartmann L. W., Vázquez-Semadeni E., Heitsch F., Zamora-Avilés M. A., 2011, MNRAS, 411, 65
  4. Ballesteros-Paredes J., Vázquez-Semadeni E., Gazol A., Hartmann L. W., Heitsch F., Colin P., 2011, MNRAS, 416, 1436
  5. Ballesteros-Paredes J. et al. 2020, Space Sci. Rev., 216, 64
  6. Ballesteros-Paredes J., Vázquez-Semadeni E., Palau A., Klessen R. S., 2018, MNRAS, 479, 2112
  7. Bate M., 2018, MNRAS, 475, 5618
  8. Burkert A., 2017, Mem. Soc. Astron. Ital., 88, 533
  9. Collins D., Kritsuk A., Padoan P., Li H., Xu H., Ustyugov S., Norman M., 2012, ApJ, 750, 13
  10. Dib S., Burkert A., 2005, ApJ, 630, 238
  11. Donkov S., Veltchev T. V., Klessen R. S., 2017, MNRAS, 466, 914
  12. Donkov S., Stefanov I. Z., 2018, MNRAS, 474, 5588
  13. Donkov S., Stefanov I. Z., 2019, MNRAS, 485, 3224
  14. Donkov S., Stefanov I. Zh., Veltchev T. V., Klessen R. S., 2021, MNRAS, 505, 3655
  15. Donkov S., Stefanov I. Zh., Veltchev T. V., Klessen R. S., 2022, MNRAS, 516, 5726
  16. Elmegreen B. G., 1997, ApJ, 486, 944
  17. Federrath C., Banerjee S., 2015, MNRAS, 448, 4
  18. Federrath C., Roman-Duval J., Klessen R. S., Schmidt W., Mac Low M.- M., 2010, A&A, 512, A81
  19. Federrath C., Klessen R. S., Schmidt W., 2008, ApJ, 688, L79
  20. Ferriere K. M., 2001, Rev. Mod. Phys., 73, 1031
  21. Girichidis P., Konstandin L., Whitworth A. P., Klessen R. S., 2014, ApJ, 781, 91
  22. Goodman A., Barranco J., Wilner D., Heyer M., 1998, ApJ, 504, 223
  23. Guerrero-Gamboa R., Vazquez-Semadeni E., 2020, ApJ, 903, 136
  24. Hartmann L., Calvet N., Guiibrink E., DÁlessio P., 1998, ApJ, 495, 385
  25. Hennebelle P., Falgarone E., 2012, A&ARv, 20, 55
  26. Hennebelle P. et al. 2022, A&A, 668, A147
  27. Hunter C., 1977, ApJ, 218, 834
  28. Jaupart E., Chabrier G., 2020, ApJ, 903, L2
  29. Kainulainen J., Beuther H., Henning T., Plume R., 2009, A&A, 508, L35
  30. Kainulainen J., Federrath C., Henning T., 2013, A&A, 553, L8
  31. Klessen R. S., 2000, ApJ, 535, 869
  32. Klessen R. S., Glover S. C. O., 2016, Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality, Saas-Fee Advanced Course, Vol. 43, Springer-Verlag, Berlin, p. 85
  33. Konstandin L., Girichidis P., Federrath C., Klessen R. S., 2012, ApJ, 761, 149
  34. Kritsuk A., Norman M., Padoan P., Wagner R., 2007, ApJ, 665, 416
  35. Kritsuk A., Norman M., Wagner R., 2011, ApJ, 727, L20
  36. Larson R., 1969, MNRAS, 145, 271
  37. Larson R., 1981, MNRAS, 194, 809
  38. Lebreuilly U., Hennebelle P., Colman T., Commercon B., Klessen R., Maury A., Molinari S., Testi L., 2021, ApJ, 917, L10
  39. Lebreuilly U., Hennebelle P., Maury A., Gonzalez M., Traficante A., Klessen R., Testi L., Molinari S., 2023, preprint (arXiv:2309.05397)
  40. Li G.-X., 2018, MNRAS, 477, 4951
  41. Li Y., Klessen R. S., Mac Low M.-M., 2003, ApJ, 592, 975
  42. Lombardi M., Bouy H., Alves J., Lada C. J., 2014, A&A, 566, A45
  43. Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
  44. Marinkova L., Veltchev T., Girichidis Ph., Donkov S., 2021, Astron. Nachr., 342, 398
  45. Mac Low M.-M., Klessen R. S., 2004, Rev. Mod. Phys., 76, 125
  46. McKee C., Ostriker E., 2007, ARA&A, 45, 565
  47. Maury A. J. et al., 2019, A&A, 621, A76
  48. Mocz P., Burkhart B., Hernquist L., McKee C. F., Springel V., 2017, ApJ, 838, 40
  49. Padoan P., Juvela M., Kritsuk A., Norman M., 2006, ApJ, 653, L125
  50. Passot T., Vazquez-Semadeni E., 1998, Phys. Rev. E, 58, 4501
  51. Penston M. V., 1969a, MNRAS, 145, 457
  52. Penston M. V., 1969b, MNRAS, 144, 425
  53. Riley K. F., Hobson M. P., Bence S. J., 2006, Student Solution Manual for Mathematical Methods for Physics and Engineering, 3rd edn. Cambridge Univ. Press, Cambridge
  54. Schneider N. et al. 2015a, A&A, 575, A79
  55. Schneider N. et al. 2015b, A&A, 578, A29
  56. Schneider N., et al.. 2015c, MNRAS, 453, L41
  57. Schneider N. et al., 2016, A&A, 587, A74
  58. Schneider N. et al. 2022, A&A, 666, 52
  59. Segura-Cox D. M. et al. 2018, ApJ., 866, 161
  60. Sheehan P. D., Tobin J. J., Looney L. W., Megeath S. T., 2022, ApJ, 929, 76
  61. Sheehan P. D., Tobin J. J., Li Z-Y., 2022, ApJ, 934, 95
  62. Shu F. H., 1977, ApJ, 214, 488
  63. Slyz A. D., Devriendt J. E. G., Bryen G., Silk J., 2005, MNRAS, 356, 2
  64. Tobin J. J. et al. 2020, ApJ, 890, 130
  65. Tobin J. J. et al. 2020, ApJ, 905, 162
  66. Vazquez-Semadeni E., 1994, ApJ, 423, 681
  67. Vazquez-Semadeni E., González R. F., Ballesteros-Paredes J., Gazol A., Kim J., 2008, MNRAS, 390, 2
  68. Vázquez-Semadeni E., Palau A., Ballesteros-Paredes J., Gomez G. C., Zamora-Aviles M., 2019, MNRAS, 490, 3
  69. Veltchev T. V., Girichidis P., Donkov S., Schneider N., Stanchev O., Marinkova L., Seifried D., Klessen R. S., 2019, MNRAS, 489, 788
  70. Whitworth A., Summers D., 1985, MNRAS, 214, 1
  71. Xu S., Lazarian A., 2020, ApJ, 890, 157

Issue

Monthly Notices of the Royal Astronomical Society, vol. 527, pp. 2790-2798, 2024, , https://doi.org/10.1093/mnras/stad3372

Copyright Oxford University Press

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science