Autors: Gotseva N., Vlahov, A. G., Poulkov, V. K., Manolova, A. H.
Title: ML-Driven Prediction of QoS in C-V2X Scenarios
Keywords: C-V2X, LGBM, Machine Learning, QoS prediction, throughput prediction, vehicular communications

Abstract: This paper explores the efficacy of a Light Gradient Boosting Machine (LGBM) model in predicting downlink throughput within a Cellular Vehicle-to-Everything (C-V2X) environment. Utilizing the Berlin V2X dataset, the model demonstrates high accuracy, achieving an R2 score of 97% and a mean absolute error (MAE) of approximately 3 Mbps. The study underscores the model's utility in enhancing vehicular communication systems by facilitating reliable quality-of-service (QoS) predictions. The model ensures efficient and effective throughput predictions by focusing on a minimal set of impactful network features and employing a simple supervised regression approach.

References

  1. T. Lohmar, A. Zaidi, H. Olofsson, et al., "Driving transformation in the automotive and road transport ecosystem with 5G, " Ericsson Technology Review, Sep. 2019.
  2. G. Fodor, H. Do, S. A. Ashraf, et al., "Supporting enhanced vehicle-T o-everything services by lte release 15 systems, " IEEE Communications Standards Magazine, vol. 3, no. 1, pp. 26-33, Mar. 2019
  3. 3GPP. (2015). Evolved universal terrestrial radio access(EUTRA) overall description. Technical Specification.TS 136300. Version 12.4.0. Sophia Antipolis Cedex-FRANCE
  4. K. Abboud, H. A. Omar, and W. Zhuang, "Interworking of DSRC and cellular network technologies for V2X communications: A survey, " IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9457-9470, Dec. 2016.
  5. H. Ye, L. Liang, G. Y. Li, et al., "Machine learning for vehicular networks: Recent advances and application examples, " IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94-101, Jun. 2018.
  6. Reyhanoglu, A., Kar, E., Kumec, F., Kara, Y., Karaagac, S., Turan, B., & Coleri, S., 2023. Machine Learning Aided NR-V2X Quality of Service Predictions. 2023 IEEE Vehicular Networking Conference (VNC), pp. 183-186.
  7. Perdomo, J., Kousaridas, A., Zhou, C., & Monserrat, J., 2021. Deep Learning-based QoS Prediction with Innate Knowledge of the Ra-dio Access Network. 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1-6.
  8. Reyhanoglu, A., Kar, E., Kumec, F., Kara, Y., Karaagac, S., Turan, B., & Coleri, S., 2023. Machine Learning Aided NR-V2X Quality of Service Predictions. 2023 IEEE Vehicular Networking Conference (VNC), pp. 183-186.
  9. R. Hernangómez et al., "Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies, " 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 2023, pp. 1-5, doi: 10.1109/VTC2023-Spring57618.2023.10200750.
  10. Rodrigo Hernangomez, Philipp Geuer, Alexandros Palaios, Daniel Schaüfele, Cara Watermann, Khawla Taleb-Bouhemadi, Mohammad Parvini, Anton Krause, Sanket Partani, Christian Vielhaus, Martin Kas-parick, Daniel F. Külzer, Friedrich Burmeister, Frank H. P. Fitzek, Hans D.Schotten, Gerhard Fettweis, Slawomir Stanczak, December 8, 2022, &;Berlin V2X&, IEEE Dataport, doi: https://dx.doi.org/10.21227/8cj7-q373.
  11. https://towardsdatascience.com/a-quick-guide-T o-lightgbmlibrary-ef5385db8d10
  12. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T.Y. (2017). Lightgbm: A highly efficient gradient-boosting decision tree. Advances in neural information processing systems, 30.
  13. https://lightgbm.readthedocs.io/en/stable/
  14. Guolin Ke; Qi Meng; Thomas Finely; Taifeng Wang; Wei Chen; Weidong Ma; Qiwei Ye; Tie-Yan Liu (2017). "LightGBM: A Highly Efficient Gradient Boosting Decision Tree"

Issue

2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST 2024 - Proceedings, 2024, , https://doi.org/10.1109/ICEST62335.2024.10639683

Copyright IEEE

Цитирания (Citation/s):
1. Tezcan M.G., Yazici I., A Novel Framework for QoS Prediction of V2X in 5G and B5G Networks: a Unified Approach with Explainable Artificial Intelligence (XAI) and Nested Cross-Validation, 2025, 2025 7th International Conference on Smart Applications Communications and Networking Smartnets 2025, issue 0, DOI 10.1109/SmartNets65254.2025.11106841 - 2025 - в издания, индексирани в Scopus
2. Partani S., Zentarra M., Kiggundu A., Schotten H.D., Improving QoS Prediction in Urban V2X Networks by Leveraging Data from Leading Vehicles and Historical Trends, 2025, IEEE Vehicular Technology Conference, issue 0, DOI 10.1109/VTC2025-Spring65109.2025.11174805, issn 15502252 - 2025 - в издания, индексирани в Scopus

Вид: публикация в международен форум, публикация в реферирано издание, индексирана в Scopus и Web of Science