Autors: Azadmanesh M., Mannan F., Roshanian J., Todrov M., Georgiev, K. K., Hassanalian M. Title: Achieving Synchronized Angular Velocities in Chaotic Satellite Systems: A Novel Controller Keywords: Abstract: Synchronization of satellite systems is crucial for achieving cost-effectiveness, flexibility, and extended area coverage. However, chaotic behavior in such systems presents significant challenges. This research inspects the chaos in satellite systems and introduces a cutting-edge solution - the Novel Integral Terminal Sliding Mode (NITSM) controller. Specifically tailored for synchronizing the angular velocities of chaotic Leader-Follower satellite systems, the NITSM controller effectively addresses chattering issues and demonstrates robustness against external disturbances like cosmic rays and solar storms. Through MATLAB simulations, the efficacy of the proposed method is verified, with comparisons made against a conventional approach. The results highlight the exceptional performance of the Novel Integral Terminal Sliding Mode controller, showcasing reduced response time, robust behavior, and a remarkable six-fold decrease in angular velocity synchronization error. References - F. Diacu and P. Holmes, Celestial encounters: the origins of chaos and stability, vol. 22. Princeton university press, 1999.
- F. Verhulst, Henri Poincaré: impatient genius. Springer Science & Business Media, 2012.
- J. Barrow-Green, Poincaré and the three body problem, no. 11. American Mathematical Soc., 1997.
- E. Lorenz, “The butterfly effect,” World Sci. Ser. Nonlinear Sci. Ser. A, vol. 39, pp. 91–94, 2000.
- E. Lorenz, “Predictability: Does the flap of a butterfly’s wing in Brazil set off a tornado in Texas?,” 1972.
- J. L. Vernon, “Understanding the butterfly effect,” Am. Sci., vol. 105, no. 3, p. 130, 2017.
- B. B. Mandelbrot, “Fractal geometry: what is it, and what does it do?,” Proc. R. Soc. London. A. Math. Phys. Sci., vol. 423, no. 1864, pp. 3–16, 1989.
- B. B. Mandelbrot, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. American Mathematical Soc., 2004.
- E. Glasner and B. Weiss, “Sensitive dependence on initial conditions,” Nonlinearity, vol. 6, no. 6, p. 1067, 1993.
- R. V Jensen, “Classical chaos,” Am. Sci., vol. 75, no. 2, pp. 168–181, 1987.
- H. G. Schuster and W. Just, Deterministic chaos: an introduction. John Wiley & Sons, 2006.
- M. J. Feigenbaum, “Universal behavior in nonlinear systems,” Phys. D Nonlinear Phenom., vol. 7, no. 1–3, pp. 16–39, 1983.
- D. K. Campbell, “Mitchell Feigenbaum: His life and legacy,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 32, no. 11, 2022.
- M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations,” J. Stat. Phys., vol. 19, no. 1, pp. 25–52, 1978.
- M. J. Feigenbaum, M. H. Jensen, and I. Procaccia, “Time ordering and the thermodynamics of strange sets: Theory and experimental tests,” Phys. Rev. Lett., vol. 57, no. 13, p. 1503, 1986.
- M. J. Feigenbaum, “Tests of the period-doubling route to chaos,” in Nonlinear Phenomena in Chemical Dynamics: Proceedings of an International Conference, Bordeaux, France, September 7–11, 1981, 1981, pp. 95–102.
- T.-Y. Li and J. A. Yorke, “Period three implies chaos,” The theory of chaotic attractors, pp. 77–84, 2004.
- D. Ruelle, “What is a strange attractor,” Not. AMS, vol. 53, no. 7, pp. 764–765, 2006.
- F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, 2006, pp. 366–381.
- A. Knauf and Y. G. Sinai, Classical nonintegrability, quantum chaos, vol. 27. Springer Science & Business Media, 1997.
- A. M. Blokh, L. A. Bunimovich, P. H. Jung, L. G. Oversteegen, and Y. G. Sinai, Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov, vol. 698. American Mathematical Soc., 2017.
- K. Khanin, “Mathematical Journey of Yakov Sinai,” J. Stat. Phys., vol. 166, no. 3–4, pp. 463–466, 2017.
- C. Letellier and O. E. Rossler, “Rossler attractor,” Scholarpedia, vol. 1, no. 10, p. 1721, 2006.
- R. D. Astumian, “Making molecules into motors,” Sci. Am., vol. 285, no. 1, pp. 56–64, 2001.
- D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng., vol. 4, no. 1, pp. 261–286, 2002.
- H. M. Hastings, “The may-wigner stability theorem,” J. Theor. Biol., vol. 97, no. 2, pp. 155–166, 1982.
- S. Banerjee, J. A. Yorke, and C. Grebogi, “Robust chaos,” Phys. Rev. Lett., vol. 80, no. 14, p. 3049, 1998.
- D. Auerbach, C. Grebogi, E. Ott, and J. A. Yorke, “Controlling chaos in high dimensional systems,” Phys. Rev. Lett., vol. 69, no. 24, p. 3479, 1992.
- S. Zambrano, M. A. F. Sanjuán, and J. A. Yorke, “Partial control of chaotic systems,” Phys. Rev. E, vol. 77, no. 5, p. 55201, 2008.
- C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, “Strange attractors that are not chaotic,” Phys. D Nonlinear Phenom., vol. 13, no. 1–2, pp. 261–268, 1984.
- C. Grebogi, E. Ott, and J. A. Yorke, “Chaotic attractors in crisis,” Phys. Rev. Lett., vol. 48, no. 22, p. 1507, 1982.
- T. Shinbrot, C. Grebogi, J. A. Yorke, and E. Ott, “Using small perturbations to control chaos,” Nature, vol. 363, no. 6428, pp. 411–417, 1993.
- E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett., vol. 64, no. 11, p. 1196, 1990.
- J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors,” Phys. D Nonlinear Phenom., vol. 7, no. 1–3, pp. 153–180, 1983.
- P. Frederickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, “The Liapunov dimension of strange attractors,” J. Differ. Equ., vol. 49, no. 2, pp. 185–207, 1983.
- M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2012.
- S. Batterson, Stephen Smale: The Mathematician Who Broke the Dimension Barrier: The Mathematician Who Broke the Dimension Barrier. American Mathematical Soc., 2012.
- S. Smale, F. Cucker, and R. Wong, The collected papers of Stephen Smale, vol. 1. World Scientific, 2000.
- G. Chen and Y. Huang, “The Smale Horseshoe,” in Chaotic Maps: Dynamics, Fractals, and Rapid Fluctuations, Springer, 2011, pp. 111–124.
- L. Sun and W. Huo, “Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous,” Aerosp. Sci. Technol., vol. 41, pp. 28–35, 2015.
- J. Wu, M. Liu, Y. Wang, and X. Cao, “Event-trigger-based cluster coordinated control of spacecraft swarm under switching topology,” Aerosp. Sci. Technol., vol. 135, p. 108200, 2023.
- A. Khan and S. Kumar, “TS fuzzy modeling and predictive control and synchronization of chaotic satellite systems,” Int. J. Model. Simul., vol. 39, no. 3, pp. 203–213, 2019.
- S. M. Hamidzadeh and R. Esmaelzadeh, “Control and synchronization chaotic satellite using active control,” Int. J. Comput. Appl., vol. 94, no. 10, 2014.
- S. Kumar, A. E. Matouk, H. Chaudhary, and S. Kant, “Control and synchronization of fractional‐order chaotic satellite systems using feedback and adaptive control techniques,” Int. J. Adapt. Control Signal Process., vol. 35, no. 4, pp. 484–497, 2021.
- A. Khan and S. Kumar, “Measuring chaos and synchronization of chaotic satellite systems using sliding mode control,” Optim. Control Appl. Methods, vol. 39, no. 5, pp. 1597–1609, 2018.
- B. Vaseghi, S. S. Hashemi, S. Mobayen, and A. Fekih, “Finite time chaos synchronization in time-delay channel and its application to satellite image encryption in OFDM communication systems,” Ieee Access, vol. 9, pp. 21332–21344, 2021.
- F. W. Alsaade, Q. Yao, S. Bekiros, M. S. Al-zahrani, A. S. Alzahrani, and H. Jahanshahi, “Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller,” Chaos, Solitons & Fractals, vol. 165, p. 112883, 2022.
- P. Pal, G. G. Jin, S. Bhakta, and V. Mukherjee, “Adaptive chaos synchronization of an attitude control of satellite: A backstepping based sliding mode approach,” Heliyon, vol. 8, no. 11, 2022.
- O. Silahtar, F. Kutlu, Ö. Atan, and O. Castillo, “Rendezvous and Docking Control of Satellites Using Chaos Synchronization Method with Intuitionistic Fuzzy Sliding Mode Control,” in Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design, Springer, 2023, pp. 177–197.
- C. Nishad, R. Prasad, and P. Kumar, “Synchronization analysis chaos of fractional derivatives chaotic satellite systems via feedback active control methods,” 2022.
- S. Eshaghi and Y. Ordokhani, “Dynamical Behaviors of the Caputo–Prabhakar Fractional Chaotic Satellite System,” Iran. J. Sci. Technol. Trans. A Sci., vol. 46, no. 5, pp. 1445–1459, 2022.
- J. Li et al., “Encryption technology of OFDM satellite system based on five-dimensional hyperchaotic synchronization,” in Thirteenth International Conference on Signal Processing Systems (ICSPS 2021), 2022, vol. 12171, pp. 236–242.
- X. Liu, C. Li, S. S. Ge, and D. Li, “Time-synchronized control of chaotic systems in secure communication,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 69, no. 9, pp. 3748–3761, 2022.
- S. Kumar, R. P. Prasad, C. Nishad, A. K. Tiwary, and F. Khan, “Analysis and chaos synchronization of Genesio–Tesi system applying sliding mode control techniques,” Int. J. Dyn. Control, vol. 11, no. 2, pp. 656–665, 2023.
- M. A. Khaniki, M. Manthouri, and M. A. Khanesar, “Adaptive non-singular fast terminal sliding mode control and synchronization of a chaotic system via interval type-2 fuzzy inference system with proportionate controller,” Iran. J. Fuzzy Syst., 2023.
- A. Khan and S. Kumar, “Study of chaos in chaotic satellite systems,” Pramana, vol. 90, pp. 1–9, 2018.
- X. Gu et al., “An autonomous satellite time synchronization system using remotely disciplined VC-OCXOs,” Sensors, vol. 15, no. 8, pp. 17895–17915, 2015.
- Z. Liu et al., “Distributed consensus tracking control of chaotic multi-agent supply chain network: A new fault-tolerant, finite-time, and chatter-free approach,” Entropy, vol. 24, no. 1, p. 33, 2021.
- 59T. T. Nguyen, Sliding mode control for systems with slow and fast modes. Rutgers The State University of New Jersey, School of Graduate Studies, 2010.
- C. Edwards and S. Spurgeon, Sliding mode control: theory and applications. Crc Press, 1998.
- W. Perruquetti and J.-P. Barbot, Sliding mode control in engineering. CRC press, 2002.
- A. T. Azar and Q. Zhu, Advances and applications in sliding mode control systems. Springer, 2015.
- C.-S. Chiu, “Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,” Automatica, vol. 48, no. 2, pp. 316–326, 2012.
- Azadmanesh, M., J. Roshanian, and M. Hassanalian. “On the importance of studying asteroids: A comprehensive review.” Progress in Aerospace Sciences (2023): 100957.
- Azadmanesh, Mahsa, Jafar Roshanian, and Mostafa Hassanalian. “Fast Terminal Sliding Mode Control for the Soft Landing of a Space Robot on an Asteroid Considering a Barycentric Gravitational Model.” Journal of Aerospace Science and Technology 16.1 (2023): 66-76.
- Azadmanesh, Mahsa, Jafar Roshanian, and Mostafa Hassanalian. “A Fuzzy Fast Terminal Approach for Tracking a Probe Around an Asteroid.” Journal of Aerospace Science and Technology 16.2 (2023): 1-10.
Issue
| AIAA Aviation Forum and ASCEND, 2024, 2024, , https://doi.org/10.2514/6.2024-4933 |
Copyright American Institute of Aeronautics and Astronautics, Inc. |