Autors: Vladkova T.G., Smani Y., Martinov B.L., Gospodinova, D. N.
Title: Recent Progress in Terrestrial Biota-Derived Anti-Biofilm Agents for Medical Applications
Keywords: anti-biofilm agents, biocidal and non-biocidal approaches, targeted stage, terrestrial biota

Abstract: The terrestrial biota is a rich source of biologically active substances whose anti-biofilm potential is not studied enough. The aim of this review is to outline a variety of terrestrial sources of antimicrobial agents with the ability to inhibit different stages of biofilm development, expecting to give some ideas for their utilization in improved anti-biofilm treatments. It provides an update for the last 5 years on anti-biofilm plant products and derivatives, essential oils, antimicrobial peptides, biosurfactants, etc., that are promising candidates for providing novel alternative approaches to combating multidrug-resistant biofilm-associated infections. Based on the reduction in bacterial adhesion to material and cell surfaces, the anti-adhesion strategy appears interesting for the prevention of bacterial attachment in combating a broad range of mono- and multispecies bacterial biofilms. So far, few studies have been carried out in this direction. Anti-biofilm coatings made by or containing biologically active products from terrestrial biota have scarcely been studied although they are of significant interest for a reduction in infections associated with medical devices. Combination therapy with commercial antibiotics and natural products is accepted now as a promising base for future advances in anti-biofilm treatment. In vivo testing and clinical trials are necessary for clinical application.

References

  1. Mishra R. Panda A.K. De Mandal S. Shakeel M. Bisht S.S. Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens Front. Microbiol. 2020 11 566325 10.3389/fmicb.2020.566325 33193155
  2. Urinary Stents Springer Nature Dordrecht, The Netherlands 2022
  3. Arciola C.R. Campoccia D. Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion Nat. Rev. Microbiol. 2018 16 397 409 10.1038/s41579-018-0019-y 29720707
  4. The European-Funded Nomorfilm Project Closes a First Cycle, ISGLOBAL (n.d.) Available online: https://www.isglobal.org/-/el-proyecto-europeo-nomorfilm-cierra-un-primer-ciclo (accessed on 9 February 2024)
  5. Ramstedt M. Ribeiro I.A.C. Bujdakova H. Mergulhão F.J.M. Jordao L. Thomsen P. Alm M. Burmølle M. Vladkova T. Can F. et al. Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations Macromol. Biosci. 2019 19 e1800384 10.1002/mabi.201800384 30884146
  6. Zhang K. Li X. Yu C. Wang Y. Promising Therapeutic Strategies against Microbial Biofilm Challenges Front. Cell. Infect. Microbiol. 2020 10 359 10.3389/fcimb.2020.00359
  7. An Estimated 1.2 Million People Died in 2019 from Antibiotic-Resistant Bacterial Infections | University of Oxford 2022 Available online: https://www.ox.ac.uk/news/2022-01-20-estimated-12-million-people-died-2019-antibiotic-resistant-bacterial-infections (accessed on 9 February 2024)
  8. World Bank Drug-Resistant Infections: A Threat to Our Economic Future World Bank Washington, DC, USA 2017 Available online: http://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future (accessed on 9 February 2024)
  9. Silva E. Teixeira J.A. Pereira M.O. Rocha C.M. Sousa A.M. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents Phytomedicine 2023 119 154973 10.1016/j.phymed.2023.154973
  10. Zhang L. Liang E. Cheng Y. Mahmood T. Ge F. Zhou K. Bao M. Lv L. Li L. Yi J. et al. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed. Pharmacother. 2020 128 110184 10.1016/j.biopha.2020.110184
  11. Vladkova T.G. Martinov B.L. Gospodinova D.N. Anti-biofilm agents from marine biota J. Chem. Technol. Metall. 2023 58 825 839 10.59957/jctm.v58i5.117
  12. Flemming H.-C. Wingender J. The biofilm matrix Nat. Rev. Microbiol. 2010 8 623 633 10.1038/nrmicro2415
  13. Murthy P.S. Raju S. Thiyagarajan V. Biofilms Control: Biomedical and Industrial Environments Alpha Science International Ltd. Littlemore, UK 2018 Available online: https://books.google.bg/books/about/Biofilms_Control.html?id=ZzRSuwEACAAJ&redir_esc=y (accessed on 21 February 2023)
  14. Vu B. Chen M. Crawford R.J. Ivanova E.P. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation Molecules 2009 14 2535 2554 10.3390/molecules14072535
  15. Jia Z. Antifouling Strategies-Interference with Bacterial Adhesion Focus on Bacterial Biofilms Das T. IntechOpen London, UK 2022 10.5772/intechopen.102965
  16. Vladkova T. Surface engineering for non-toxic biofouling control (review) J. Univ. Chem. Technol. Metall. 2007 42 239 256
  17. Vladkova T.G. Surface Engineering of Polymeric Biomaterials, Smithers Rapra Technology, Shawbury, Shrewsbury 2013 Available online: https://www.google.bg/books/edition/Surface_Engineering_of_Polymeric_Biomate/BgMmDwAAQBAJ?hl=en&gbpv=0 (accessed on 20 November 2013)
  18. Murthy P.S. Raju S. Thiyagarajan V. Current strategies to reduction of marine biofilm formation Biofilm Control in Biomedical and Industrial Environments Alpha Science International Limited Oxford, UK 2019 258
  19. Vladkova T.G. Staneva A.D. Gospodinova D.N. Surface engineered biomaterials and ureteral stents inhibiting biofilm formation and encrustation Surf. Coat. Technol. 2020 404 126424 10.1016/j.surfcoat.2020.126424
  20. Rather M.A. Gupta K. Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies Braz. J. Microbiol. 2021 52 1701 1718 10.1007/s42770-021-00624-x 34558029
  21. Lu L. Hu W. Tian Z. Yuan D. Yi G. Zhou Y. Cheng Q. Zhu J. Li M. Developing natural products as potential anti-biofilm agents Chin. Med. 2019 14 11 10.1186/s13020-019-0232-2 30936939
  22. Reuter M. Kruger D.H. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections Virus Genes 2020 56 136 149 10.1007/s11262-020-01735-7 32036540
  23. Karygianni L. Attin T. Thurnheer T. Combined DNase and Proteinase Treatment Interferes with Composition and Structural Integrity of Multispecies Oral Biofilms J. Clin. Med. 2020 9 983 10.3390/jcm9040983
  24. Yuan L. Hansen M.F. Røder H.L. Wang N. Burmølle M. He G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies Crit. Rev. Food Sci. Nutr. 2019 60 2277 2293 10.1080/10408398.2019.1632790
  25. Magin C.M. Cooper S.P. Brennan A.B. Non-toxic antifouling strategies Mater. Today Proc. 2010 13 36 44 10.1016/S1369-7021(10)70058-4
  26. Fabbri S. Johnston D. Rmaile A. Gottenbos B. De Jager M. Aspiras M. Starke E. Ward M. Stoodley P. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays J. Mech. Behav. Biomed. Mater. 2016 59 197 206 10.1016/j.jmbbm.2015.12.012
  27. Ikada Y. Suzuki M. Tamada Y. Polymer Surfaces Possessing Minimal Interaction with Blood Components Polymers as Biomaterials Shalaby S.W. Hoffman A.S. Ratner B.D. Horbett T.A. Springer Boston, MA, USA 1984 135 147 10.1007/978-1-4613-2433-1_10
  28. Vladkova T. Surface Modification Approach to Control Biofouling Marine and Industrial Biofouling Flemming H.-C. Murthy P.S. Venkatesan R. Cooksey K. Springer Berlin/Heidelberg, Germany 2009 135 163 10.1007/978-3-540-69796-1_7
  29. Akuzov D. Brümmer F. Vladkova T. Some possibilities to reduce the biofilm formation on transparent siloxane coatings Colloids Surf. B Biointerfaces 2013 104 303 310 10.1016/j.colsurfb.2012.09.036
  30. Akuzov D. Vladkova T. Zamfirova G. Gaydarov V. Nascimento M.V. Szeglat N. Grunwald I. Polydimethyl siloxane coatings with superior antibiofouling efficiency in laboratory and marine conditions Prog. Org. Coat. 2017 103 126 134 10.1016/j.porgcoat.2016.10.028
  31. Costa B. Mota R. Tamagnini P. Martins M.C.L. Costa F. Natural Cyanobacterial Polymer-Based Coating as a Preventive Strategy to Avoid Catheter-Associated Urinary Tract Infections Mar. Drugs 2020 18 279 10.3390/md18060279 32466349
  32. Adnan M. Patel M. Deshpande S. Alreshidi M. Siddiqui A.J. Reddy M.N. Emira N. De Feo V. Effect of Adiantum philippense Extract on Biofilm Formation, Adhesion with Its Antibacterial Activities Against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An in vitro-in silico Approach Front. Microbiol. 2020 11 823 10.3389/fmicb.2020.00823 32477292
  33. Keyhanian A. Mohammadimehr M. Nojoomi F. Naghoosi H. Khomartash M.S. Chamanara M. Inhibition of bacterial adhesion and anti-biofilm effects of Bacillus cereus and Serratia nematodiphila biosurfactants against Staphylococcus aureus and Pseudomonas aeruginosa Iran. J. Microbiol. 2023 15 425 432 10.18502/ijm.v15i3.12903 37448686
  34. Turan N.B. Engin G.Ö. Chapter Four—Quorum Quenching Comprehensive Analytical Chemistry Chormey D.S. Bakırdere S. Turan N.B. Engin G.Ö. Elsevier Chem, Switzerland 2018 117 149 10.1016/bs.coac.2018.02.003
  35. Gaálová-Radochová B. Kendra S. Jordao L. Kursawe L. Kikhney J. Moter A. Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus Antibiotics 2023 12 441 10.3390/antibiotics12030441
  36. Scoffone V.C. Trespidi G. Chiarelli L.R. Barbieri G. Buroni S. Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens Int. J. Mol. Sci. 2019 20 1838 10.3390/ijms20081838
  37. Shastry R.P. Rekha P. Rai V.R. Biofilm inhibitory activity of metallo-protein AHL-lactonase from cell-free lysate of endophytic Enterobacter species isolated from Coscinium fenestratum Gaertn Biocatal. Agric. Biotechnol. 2019 18 101009 10.1016/j.bcab.2019.01.047
  38. Khan F. Oloketuyi S.F. Kim Y.-M. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria Curr. Drug Targets 2018 20 1156 1179 10.2174/1389450120666190423161249
  39. Paluch E. Rewak-Soroczyńska J. Jędrusik I. Mazurkiewicz E. Jermakow K. Prevention of biofilm formation by quorum quenching Appl. Microbiol. Biotechnol. 2020 104 1871 1881 10.1007/s00253-020-10349-w
  40. Cui T. Bai F. Sun M. Lv X. Li X. Zhang D. Du H. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa LWT 2019 117 108696 10.1016/j.lwt.2019.108696
  41. Zhong L. Ravichandran V. Zhang N. Wang H. Bian X. Zhang Y. Li A. Attenuation of Pseudomonas aeruginosa Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions Int. J. Mol. Sci. 2020 21 2190 10.3390/ijms21062190
  42. Paraszkiewicz K. Moryl M. Płaza G. Bhagat D. Satpute S.K. Bernat P. Surfactants of microbial origin as antibiofilm agents Int. J. Environ. Health Res. 2021 31 401 420 10.1080/09603123.2019.1664729 31509014
  43. Adnan M. Siddiqui A.J. Noumi E. Ashraf S.A. Awadelkareem A.M. Hadi S. Snoussi M. Badraoui R. Bardakci F. Sachidanandan M. et al. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence Biomol. Biomed. 2023 23 1051 1068 10.17305/bb.2023.9324 37421468
  44. Flemming H.-C. Neu T.R. Wingender J. The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS) IWA Publishing London, UK 2016 10.2166/9781780407425
  45. Vladkova T.G. Monov D.M. Akuzov D.T. Ivanova I.A. Gospodinova D. Comparative Study of the Marinobacter hydrocarbonoclasticus Biofilm Formation on Antioxidants Containing Siloxane Composite Coatings Materials 2022 15 4530 10.3390/ma15134530 35806655
  46. Patel K.K. Surekha D.B. Tripathi M. Anjum M.M. Muthu M.S. Tilak R. Agrawal A.K. Singh S. Antibiofilm Potential of Silver Sulfadiazine-Loaded Nanoparticle Formulations: A Study on the Effect of DNase-I on Microbial Biofilm and Wound Healing Activity Mol. Pharm. 2019 16 3916 3925 10.1021/acs.molpharmaceut.9b00527
  47. Tasia W. Lei C. Cao Y. Ye Q. He Y. Xu C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles Nanoscale 2020 12 2328 2332 10.1039/C9NR08467C
  48. Eboigbodin K.E. Biggs C.A. Characterization of the Extracellular Polymeric Substances Produced by Escherichia coli Using Infrared Spectroscopic, Proteomic, and Aggregation Studies Biomacromolecules 2008 9 686 695 10.1021/bm701043c
  49. Wang T. Huang W. Duan Q. Wang J. Cheng H. Shao J. Li F. Wu D. Sodium houttuyfonate in vitro inhibits biofilm dispersion and expression of bdlA in Pseudomonas aeruginosa Mol. Biol. Rep. 2019 46 471 477 10.1007/s11033-018-4497-9
  50. Dey P. Parai D. Banerjee M. Hossain S.T. Mukherjee S.K. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm Int. J. Med. Microbiol. 2020 310 151410 10.1016/j.ijmm.2020.151410
  51. Shin J. Gwak J. Kamarajan P. Fenno J. Rickard A. Kapila Y. Biomedical applications of nisin J. Appl. Microbiol. 2016 120 1449 1465 10.1111/jam.13033
  52. Sahoo A. Swain S.S. Behera A. Sahoo G. Mahapatra P.K. Panda S.K. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review Front. Microbiol. 2021 12 661195 10.3389/fmicb.2021.661195
  53. Liaqat I. Gulab B. Hanif U. Sultan A. Sadiqa A. Zafar U. Afzaal M. Naseem S. Akram S. Saleem G. Honey Potential as Antibiofilm, Antiquorum Sensing and Dispersal Agent against Multispecies Bacterial Biofilm J. Oleo Sci. 2021 71 425 434 10.5650/jos.ess21199 35153244
  54. Jensen G.S. Cruickshank D. Hamilton D.E. Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts J. Microbiol. Biotechnol. 2023 33 715 723 10.4014/jmb.2212.12010 37072676
  55. Teixeira M.C. Carbone C. Sousa M.C. Espina M. Garcia M.L. Sanchez-Lopez E. Souto E.B. Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs) Nanomaterials 2020 10 560 10.3390/nano10030560 32244858
  56. Ogunsona E.O. Muthuraj R. Ojogbo E. Valerio O. Mekonnen T.H. Engineered nanomaterials for antimicrobial applications: A review Appl. Mater. Today 2020 18 100473 10.1016/j.apmt.2019.100473
  57. Erkoc P. Ulucan-Karnak F. Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies Prosthesis 2021 3 25 52 10.3390/prosthesis3010005
  58. Hemeg H.A. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles Z. Naturforschung Sect. C-A J. Biosci. 2022 77 365 378 10.1515/znc-2021-0296
  59. Vladkova T. Akuzov D. Klöppel A. Brümmer F. Current approaches to reduction of marine biofilm formation J. Chem. Technol. Metall. 2014 49 345 355
  60. Asma S.T. Imre K. Morar A. Herman V. Acaroz U. Mukhtar H. Arslan-Acaroz D. Shah S.R.A. Gerlach R. An Overview of Biofilm Formation–Combating Strategies and Mechanisms of Action of Antibiofilm Agents Life 2022 12 1110 10.3390/life12081110
  61. Melander R.J. Basak A.K. Melander C. Natural products as inspiration for the development of bacterial antibiofilm agents Nat. Prod. Rep. 2020 37 1454 1477 10.1039/D0NP00022A
  62. Chi M. Qi M. Wang P. Weir M.D. Melo M.A. Sun X. Dong B. Li C. Wu J. Wang L. et al. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms Int. J. Mol. Sci. 2019 20 278 10.3390/ijms20020278
  63. Azman A.-S. Mawang C.-I. Khairat J.-E. AbuBakar S. Actinobacteria—A promising natural source of anti-biofilm agents Int. Microbiol. 2019 22 403 409 10.1007/s10123-019-00066-4 30847714
  64. Xu L. Shao C. Li G. Shan A. Chou S. Wang J. Ma Q. Dong N. Conversion of Broad-Spectrum Antimicrobial Peptides into Species-Specific Antimicrobials Capable of Precisely Targeting Pathogenic Bacteria Sci. Rep. 2020 10 944 10.1038/s41598-020-58014-6 31969663
  65. Chi Y. Wang Y. Ji M. Li Y. Zhu H. Yan Y. Fu D. Zou L. Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development Front. Microbiol. 2022 13 955459 10.3389/fmicb.2022.955459 36033896
  66. Mastoor S. Nazim F. Rizwan-Ul-Hasan S. Ahmed K. Khan S. Ali S.N. Abidi S.H. Analysis of the Antimicrobial and Anti-Biofilm Activity of Natural Compounds and Their Analogues against Staphylococcus aureus Isolates Molecules 2022 27 6874 10.3390/molecules27206874 36296467
  67. Nystedt H.L. Grønlien K.G. Rolfsnes R.R. Winther-Larsen H.C. Økstad O.A.L. Tønnesen H.H. Neutral natural deep eutectic solvents as anti-biofilm agents Biofilm 2023 5 100114 10.1016/j.bioflm.2023.100114
  68. Radhakrishnan E. Benny A. Synthetic and Natural Agents as Bacterial Biofilm Inhibitors Bentham Science Publisher Sharjah, United Arab Emirates 2023 100 133 Available online: https://www.eurekaselect.com/chapter/20119 (accessed on 10 February 2024)
  69. Boakye Y.D. Osafo N. Danquah C.A. Adu F. Agyare C. Boakye Y.D. Osafo N. Danquah C.A. Adu F. Agyare C. Antimicrobial Agents: Antibacterial Agents, Anti-biofilm Agents, Antibacterial Natural Compounds, and Antibacterial Chemicals Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods IntechOpen London, UK 2019 10.5772/intechopen.82560
  70. Bolouri P. Salami R. Kouhi S. Kordi M. Lajayer B.A. Hadian J. Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries Molecules 2022 27 8999 10.3390/molecules27248999
  71. Zubair M. Antimicrobial and Anti-Biofilm Activities of Citrus sinensis and Moringa oleifera Against the Pathogenic Pseudomonas aeruginosa and Staphylococcus aureus Cureus 2020 12 e12337 10.7759/cureus.12337
  72. Yong Y.Y. Dykes G.A. Choo W.S. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds Crit. Rev. Microbiol. 2019 45 201 222 10.1080/1040841X.2019.1573802
  73. Yahya M.F.Z.R. Anti-biofilm Potential and Mode of Action of Malaysian Plant Species: A Review Sci. Lett. 2020 14 34 46 10.24191/sl.v14i2.9541
  74. Guzzo F. Scognamiglio M. Fiorentino A. Buommino E. D’abrosca B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms Molecules 2020 25 5024 10.3390/molecules25215024
  75. Rohatgi A. Gupta P. Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm Infect. Genet. Evol. 2021 95 105055 10.1016/j.meegid.2021.105055 34461310
  76. Shamim A. Ali A. Iqbal Z. Mirza M.A. Aqil M. Kawish S.M. Siddiqui A. Kumar V. Naseef P.P. Alshadidi A.A.F. et al. Natural Medicine a Promising Candidate in Combating Microbial Biofilm Antibiotics 2023 12 299 10.3390/antibiotics12020299 36830210
  77. Tamfu A.N. Ceylan O. Fru G.C. Ozturk M. Duru M.E. Shaheen F. Antibiofilm, antiquorum sensing and antioxidant activity of secondary metabolites from seeds of Annona senegalensis, Persoon Microb. Pathog. 2020 144 104191 10.1016/j.micpath.2020.104191 32298749
  78. Roscetto E. Masi M. Esposito M. Di Lecce R. Delicato A. Maddau L. Calabrò V. Evidente A. Catania M.R. Anti-Biofilm Activity of the Fungal Phytotoxin Sphaeropsidin A against Clinical Isolates of Antibiotic-Resistant Bacteria Toxins 2020 12 444 10.3390/toxins12070444 32650496
  79. Singh K. Kulkarni S.S. Small Carbohydrate Derivatives as Potent Antibiofilm Agents J. Med. Chem. 2022 65 8525 8549 10.1021/acs.jmedchem.1c01039
  80. Jini D. Biological Applications of Essential Oil Essent. Oils John Wiley & Sons, Ltd. Hoboken, NJ, USA 2023 361 380 10.1002/9781119829614.ch16
  81. de Sousa D.P. Damasceno R.O.S. Amorati R. Elshabrawy H.A. de Castro R.D. Bezerra D.P. Nunes V.R.V. Gomes R.C. Lima T.C. Essential Oils: Chemistry and Pharmacological Activities Biomolecules 2023 13 1144 10.3390/biom13071144
  82. Durczyńska Z. Żukowska G. Properties and Applications of Essential Oils: A Review J. Ecol. Eng. 2024 25 333 340 10.12911/22998993/177404
  83. Purkait S. Bhattacharya A. Bag A. Chattopadhyay R. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium Lett. Appl. Microbiol. 2020 71 195 202 10.1111/lam.13308
  84. Lobos O. Padilla C. Barrera A. Lopez-Cabana Z. Mora C. Abaca P. Carrasco-Sánchez V. Antibiofilm and Antifungal Activities of Laurelia sempervirens (Chilean laurel) Essential Oil Jundishapur J. Nat. Pharm. Prod. 2021 16 e113611 10.5812/jjnpp.113611
  85. Aljaafari M.N. AlAli A.O. Baqais L. Alqubaisy M. AlAli M. Molouki A. Ong-Abdullah J. Abushelaibi A. Lai K.-S. Lim S.-H.E. An Overview of the Potential Therapeutic Applications of Essential Oils Molecules 2021 26 628 10.3390/molecules26030628
  86. Chen Z. Yang G. Lu S. Chen D. Fan S. Xu J. Wu B. He J. Design and antimicrobial activities of LL-37 derivatives inhibiting the formation of Streptococcus mutans biofilm Chem. Biol. Drug Des. 2019 93 1175 1185 10.1111/cbdd.13419 30635992
  87. Pinheiro F. Bortolotto V. Araujo S. Poetini M. Sehn C. Neto J. Zeni G. Prigol M. Antimicrobial effect of 2-phenylethynyl-butyltellurium in Escherichia coli and its association with oxidative stress J. Microbiol. Biotechnol. 2018 28 1209 1216 10.4014/jmb.1802.12074 29943556
  88. Shahrour H. Ferrer-Espada R. Dandache I. Bárcena-Varela S. Sánchez-Gómez S. Chokr A. De Tejada G.M. AMPs as Anti-biofilm Agents for Human Therapy and Prophylaxis Antimicrobial Peptides Matsuzaki K. Advances in Experimental Medicine and Biology Springer Singapore 2019 Volume 1117 257 279 9789811335877
  89. Sztukowska M.N. Roky M. Demuth D.R. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms Mol. Oral Microbiol. 2019 34 169 182 10.1111/omi.12267 31389653
  90. Di Somma A. Moretta A. Canè C. Cirillo A. Duilio A. Antimicrobial and Antibiofilm Peptides Biomolecules 2020 10 652 10.3390/biom10040652 32340301
  91. Baquero F. Lanza V.F. Baquero M.-R. del Campo R. Bravo-Vázquez D.A. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere Front. Microbiol. 2019 10 2261 10.3389/fmicb.2019.02261
  92. Darbandi A. Asadi A. Ari M.M. Ohadi E. Talebi M. Zadeh M.H. Emamie A.D. Ghanavati R. Kakanj M. Bacteriocins: Properties and potential use as antimicrobials J. Clin. Lab. Anal. 2022 36 e24093 10.1002/jcla.24093
  93. Almaaytah A. Mohammed G.K. Abualhaijaa A. Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria Drug Des. Dev. Ther. 2017 11 3159 3170 10.2147/DDDT.S147450
  94. Shurko J.F. Galega R.S. Li C. Lee G.C. Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus J. Antibiot. 2018 71 971 974 10.1038/s41429-018-0090-7
  95. Bose B. Downey T. Ramasubramanian A.K. Anastasiu D.C. Identification of Distinct Characteristics of Antibiofilm Peptides and Prospection of Diverse Sources for Efficacious Sequences Front. Microbiol. 2022 12 783284 10.3389/fmicb.2021.783284
  96. Chen C.H. Lu T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications Antibiotics 2020 9 24 10.3390/antibiotics9010024
  97. Kerenga B.K. McKenna J.A. Harvey P.J. Quimbar P. Garcia-Ceron D. Lay F.T. Phan T.K. Veneer P.K. Vasa S. Parisi K. et al. Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32 Front. Microbiol. 2019 10 795 10.3389/fmicb.2019.00795 31031739
  98. Von Borowski R.G. Chat S. Schneider R. Nonin-Lecomte S. Bouaziz S. Giudice E. Zimmer A.R. Gnoatto S.C.B. Macedo A.J. Gillet R. Capsicumicine, a New Bioinspired Peptide from Red Peppers Prevents Staphylococcal Biofilm In Vitro and In Vivo via a Matrix Anti-Assembly Mechanism of Action Microbiol. Spectr. 2021 9 e0047121 10.1128/Spectrum.00471-21 34704807
  99. Yuan Y. Zai Y. Xi X. Ma C. Wang L. Zhou M. Shaw C. Chen T. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model Biochim. Biophys. Acta (BBA)—Gen. Subj. 2019 1863 849 856 10.1016/j.bbagen.2019.02.013 30802593
  100. Casciaro B. Cappiello F. Loffredo M.R. Ghirga F. Mangoni M.L. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2 Curr. Med. Chem. 2020 27 1405 1419 10.2174/0929867326666190722095408 31333082
  101. Parducho K.R. Beadell B. Ybarra T.K. Bush M. Escalera E. Trejos A.T. Chieng A. Mendez M. Anderson C. Park H. et al. The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa without Compromising Metabolic Activity Front. Immunol. 2020 11 805 10.3389/fimmu.2020.00805
  102. Khozani R.S. Shahbazzadeh D. Harzandi N. Feizabadi M.M. Bagheri K.P. Kinetics Study of Antimicrobial Peptide, Melittin, in Simultaneous Biofilm Degradation and Eradication of Potent Biofilm Producing MDR Pseudomonas aeruginosa Isolates Int. J. Pept. Res. Ther. 2019 25 329 338 10.1007/s10989-018-9675-z
  103. Stączek S. Cytryńska M. Zdybicka-Barabas A. Unraveling the Role of Antimicrobial Peptides in Insects Int. J. Mol. Sci. 2023 24 5753 10.3390/ijms24065753
  104. Kalsy M. Tonk M. Hardt M. Dobrindt U. Zdybicka-Barabas A. Cytrynska M. Vilcinskas A. Mukherjee K. The insect antimicrobial peptide cecropin A disrupts uropathogenic Escherichia coli biofilms npj Biofilms Microbiomes 2020 6 6 10.1038/s41522-020-0116-3
  105. Bruno R. Maresca M. Canaan S. Cavalier J.-F. Mabrouk K. Boidin-Wichlacz C. Olleik H. Zeppilli D. Brodin P. Massol F. et al. Worms’ Antimicrobial Peptides Mar. Drugs 2019 17 512 10.3390/md17090512
  106. Parveen S. Basu M. Chowdhury P. Dhara T. DasGupta S. Das S. Dasgupta S. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate Int. J. Biol. Macromol. 2024 260 129470 10.1016/j.ijbiomac.2024.129470
  107. Yan X. Gu S. Cui X. Shi Y. Wen S. Chen H. Ge J. Antimicrobial Pediococcus acidilactici and Lactobacillus plantarum against, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Staphylococcus aureus CMCC26003 Microb. Pathog. 2019 127 12 20 10.1016/j.micpath.2018.11.039 30496836
  108. Prasad R.V. Kumar R.A. Sharma D. Sharma A. Nagarajan S. Chapter 21—Sophorolipids and rhamnolipids as a biosurfactant: Synthesis and applications Green Sustainable Process for Chemical and Environmental Engineering and Science Inamuddin Adetunji C.O. Asiri A.M. Elsevier Amsterdam, The Netherlands 2021 423 472 10.1016/B978-0-12-823380-1.00014-9
  109. Dias M.A.M. Nitschke M. Bacterial-derived surfactants: An update on general aspects and forthcoming applications Braz. J. Microbiol. 2023 54 103 123 10.1007/s42770-023-00905-7 36662441
  110. Sharahi J.Y. Azimi T. Shariati A. Safari H. Tehrani M.K. Hashemi A. Advanced strategies for combating bacterial biofilms J. Cell. Physiol. 2019 234 14689 14708 10.1002/jcp.28225 30693517
  111. Abdollahi S. Tofighi Z. Babaee T. Shamsi M. Rahimzadeh G. Rezvanifar H. Saeidi E. Amiri M.M. Ashtiani Y.S. Samadi N. Evaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa Iran. J. Pharm. Res. IJPR 2020 19 115 126 10.22037/IJPR.2020.1101033 33224216
  112. Satpute S.K. Mone N.S. Das P. Banat I.M. Banpurkar A.G. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant BMC Microbiol. 2019 19 39 10.1186/s12866-019-1412-z
  113. Giordani B. Costantini P.E. Fedi S. Cappelletti M. Abruzzo A. Parolin C. Foschi C. Frisco G. Calonghi N. Cerchiara T. et al. Liposomes containing biosurfactants isolated from Lactobacillus gasseri exert antibiofilm activity against methicillin resistant Staphylococcus aureus strains Eur. J. Pharm. Biopharm. 2019 139 246 252 10.1016/j.ejpb.2019.04.011
  114. Sacco L.P. Castellane T.C.L. Polachini T.C. Lemos E.G.d.M. Alves L.M.C. Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities J. Polym. Res. 2019 26 91 10.1007/s10965-019-1737-1
  115. Ohadi M. Forootanfar H. Dehghannoudeh G. Eslaminejad T. Ameri A. Shakibaie M. Adeli-Sardou M. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6 Microb. Pathog. 2020 138 103806 10.1016/j.micpath.2019.103806
  116. Abdel-Aziz M.M. Al-Omar M.S. Mohammed H.A. Emam T.M. In Vitro and Ex Vivo Antibiofilm Activity of a Lipopeptide Biosurfactant Produced by the Entomopathogenic Beauveria bassiana Strain against Microsporum canis Microorganisms 2020 8 232 10.3390/microorganisms8020232
  117. Janek T. Drzymała K. Dobrowolski A. In vitro efficacy of the lipopeptide biosurfactant surfactin-C15and its complexes with divalent counterions to inhibit Candida albicans biofilm and hyphal formation Biofouling 2020 36 210 221 10.1080/08927014.2020.1752370
  118. EK R. Mathew J. Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials J. Biotechnol. 2020 313 1 10 10.1016/j.jbiotec.2020.03.005
  119. Ceresa C. Rinaldi M. Tessarolo F. Maniglio D. Fedeli E. Tambone E. Caciagli P. Banat I.M. De Rienzo M.A.D. Fracchia L. Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans–Staphylococcus spp. Dual-Species Biofilms Front. Microbiol. 2021 11 545654 10.3389/fmicb.2020.545654 33519721
  120. Karlapudi A.P. Venkateswarulu T.C. Srirama K. Kota R.K. Mikkili I. Kodali V.P. Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain J. King Saud Univ.—Sci. 2020 32 223 227 10.1016/j.jksus.2018.04.007
  121. Gharieb R.M.A. Saad M.F. Mohamed A.S. Tartor Y.H. Characterization of two novel lytic bacteriophages for reducing biofilms of zoonotic multidrug-resistant Staphylococcus aureus and controlling their growth in milk LWT 2020 124 109145 10.1016/j.lwt.2020.109145
  122. Pires D.P. Costa A.R. Pinto G. Meneses L. Azeredo J. Current challenges and future opportunities of phage therapy FEMS Microbiol. Rev. 2020 44 684 700 10.1093/femsre/fuaa017

Issue

Applied Microbiology (Switzerland), vol. 4, pp. 1362-1383, 2024, , https://doi.org/10.3390/applmicrobiol4030094

Copyright MDPI

Цитирания (Citation/s):
1. E.-S. Et Al., ‘Effects of Polycyclic Aromatic Hydrocarbons Pollution on the Macro-Compositions and Bioactivity of Extracts from Lithophaga lithophaga (Linnaeus, 1758), Egypt’, Egypt. J. Aquat. Biol. Fish., vol. 28, no. 5, pp. 2237–2273, Sep. 2024, doi: 10.21608/ejabf.2024.389805. - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus