Autors: Tsochev, G. R., Ukov, T. G.
Title: Explaining Crisis Situations via a Cognitive Model of Attention
Keywords: cognitive architectures, cognitive bias, crisis situation, critical infrastructure, decision making, metacognition

Abstract: Decision making in critical situations is a complex process. There are many processes to consider. This paper describes a theoretical approach to researching attentional processes and automatic unconscious processes in terms of metacognition. An application of the approach is presented to explain decision making and metacognition as a solution for ineffective cognitive biases during a crisis situation. Evidence is presented from studies on neuropsychology, cognitive control, and cognitive architectures. An application of the recently formulated semiotic methodology is implemented that allows the design of conceptual models of Attention as Action. The formulation of a general model of attentional processes is based on a set of rules. The crisis phenomenon, as the crisis situation trigger, is semiotically described and applied as insight for a crisis information system design that prompts its users toward self-aware internal decision making. The research conducted evidently shows how the approach can explain the design of several cognitive architectures. Pointing toward metacognition as a solution to a crisis phenomenon and cognitive biases, the paper shows that understanding human cognitive and behavioral processes can significantly improve management in a critical infrastructure crisis situation.

References

  1. Marks D.F. The Action Cycle Theory of Perception and Mental Imagery Vision 2023 7 12 10.3390/vision7010012 36810316
  2. Neisser U. Cognitive Psychology: Classic Edition 1st ed. Psychology Press London, UK 2014 10.4324/9781315736174
  3. Norman D.A. Shallice T. Attention to Action: Willed and Automatic Control of Behavior Plenum Press New York, NY, USA 1980
  4. Madl T. Baars B.J. Franklin S. The timing of the cognitive cycle PLoS ONE 2011 6 e14803 PMC3081809 10.1371/journal.pone.0014803 21541015
  5. Anderson J.R. Matessa M. Lebiere C. ACT-R: A Theory of Higher Level Cognition and Its Relation to Visual Attention Hum. –Comput. Interact. 1997 12 439 462 10.1207/s15327051hci1204_5
  6. Sloman A. The Cognition and Affect Project: Architectures, Architecture-Schemas, and the New Science of Mind 2003 Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b376bcfcd69798a5027eae518d001cbaf629deae (accessed on 16 June 2024)
  7. Efklides A. Metacognitive Experiences in Problem Solving Trends and Prospects in Motivation Research Springer Dordrecht, The Netherlands 2002
  8. Flavell J.H. Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry Am. Psychol. 1979 34 906 10.1037/0003-066X.34.10.906
  9. Wheeler M.A. Stuss D.T. Tulving E. Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness Psychol. Bull. 1997 121 331 354 9136640 10.1037/0033-2909.121.3.331
  10. Nick Yeung and Christopher Summerfield. Metacognition in Human Decision-Making: Confidence and Error Monitoring 2012 Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318764/ (accessed on 17 June 2024)
  11. Ordinance on the Procedure, Method and Competent Authorities for the Identification of Critical Infrastructures and Their Sites and Their Risk Assessment Available online: https://lex.bg/laws/ldoc/2135816878 (accessed on 24 July 2024)
  12. Critical Infrastructure Sectors, American’s Cyber Defence Agency Available online: https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors (accessed on 24 July 2024)
  13. Cifuentes C.L. Fundamentals of the Managerial Decision-Making Process Int. Stud. Manag. Organ. 1972 2 213 221 10.1080/00208825.1972.11656120
  14. Harrison E.F. The Managerial Decision-Making Process Houghton Mifflin Boston, MA, USA 1995
  15. European Council Council Directive 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve their Protection European Union Brussels, Belgium 2008
  16. The Commission Adopts a Delegated Act Establishing a List of Essential Services, European Commission Newsroom Available online: https://ec.europa.eu/newsroom/cipr/items/806160/en (accessed on 24 June 2024)
  17. Blumenthal D. Stoddard R. Implementation Planning: The Critical Step. Creating the best-laid plan in the first step toward project success PM Netw. 1999 13 80 86
  18. Graham D.J. Cleary M.J. Practical Tools for Continuous Improvement: Problem-Solving and Planning Tools PQ Systems Dayton, OH, USA 2000 Volume 2
  19. Distributed Environment for Critical Infrastructure Decision-Making Exercises, DHS Science and Technology Directorate Available online: https://www.dhs.gov/sites/default/files/publications/Distributed%20Environment%20for%20Critical%20Infrastructure%20Decision%20Making%20Exercises-DECIDE-508.pdf (accessed on 24 June 2024)
  20. Chen C. Xu L. Zhao D. Xu T. Lei P. A new model for describing the urban resilience considering adaptability, resistance and recovery Saf. Sci. 2020 128 104756 10.1016/j.ssci.2020.104756
  21. Splichalova A. Patrman D. Kotalova N. Hromada M. Managerial Decision Making in Indicating a Disruption of Critical Infrastructure Element Resilience Adm. Sci. 2020 10 75 10.3390/admsci10030075
  22. Hodicky J. Özkan G. Özdemir H. Stodola P. Drozd J. Buck W. Dynamic Modeling for Resilience Measurement: NATO Resilience Decision Support Model Appl. Sci. 2020 10 2639 10.3390/app10082639
  23. Khudiakov I. The Decision-Making Method in the Management of Engineering Infrastructure Reconstruction Programs Using an Adaptive Decision Support Model Light. Eng. Power Eng. 2023 62 37 43 10.33042/2079-424X.2023.62.2.01
  24. Aleksieva J. Tomov P. Application and verification of the improvement system for decision-making in crisis conditions Autom. Discret. Prod. Eng. Sofia 2024 6 169 172
  25. Encyclopedia of Behavioral Neuroscience, 2nd ed Available online: https://www.sciencedirect.com/referencework/9780128216361/encyclopedia-of-behavioral-neuroscience-2nd-edition (accessed on 27 April 2024)
  26. Available online: https://www.criticalthinking.org/pages/defining-critical-thinking/766 (accessed on 16 May 2024)
  27. Paulus D. Vries G. Janssen M. Walle B.V. The influence of cognitive bias on crisis decision-making: Experimental evidence on the comparison of bias effects between crisis decision-maker groups Int. J. Disaster Risk Reduct. 2022 82 103379 10.1016/j.ijdrr.2022.103379
  28. Deaves R. Can Decision Support Systems Debias Investors? 2006 Available online: https://www.academia.edu/30532834/Can_Decision_Support_Systems_Debias_Investors (accessed on 26 June 2024)
  29. Fridland E. Automatically minded Synthese 2017 194 4337 4363 10.1007/s11229-014-0617-9
  30. Baars B.J. In the Theater of Consciousness: The Workspace of the Mind Oxford Academic New York, NY, USA 1997
  31. Baars B. Franklin S. Consciousness is computational: The LIDA model of global workspace theory Int. J. Mach. Conscious. 2009 1 23 32 10.1142/S1793843009000050
  32. Baars B.J. Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience Prog. Brain Res. 2005 150 45 53
  33. Marks D.F. Phenomenological Studies of Visual Mental Imagery: A Review and Synthesis of Historical Datasets Vision 2023 7 67 10.3390/vision7040067
  34. Marks D.F. I Am Conscious, Therefore, I Am: Imagery, Affect, Action, and a General Theory of Behavior Brain Sci. 2019 9 107 10.3390/brainsci9050107 31083483
  35. Gold J.I. Shadlen M.N. The Neural Basis of Decision Making Annu. Rev. Neurosci. 2007 30 535 574 10.1146/annurev.neuro.29.051605.113038
  36. Dehaene S. Naccache L. Cohen L. Bihan D.L. Mangin J.F. Poline J.B. Rivière D. Cerebral mechanisms of word masking and unconscious repetition priming Nat. Neurosci. 2001 4 752 758 10.1038/89551
  37. Franklin S. Baars B.J. Ramamurthy U. Ventura M. The Role of Consciousness in Memory Brains Minds Media 2005 2005 bmm150
  38. Faghihi U. McCall R. Franklin S. A computational model of attentional learning in a cognitive agent Biol. Inspired Cogn. Archit. 2012 2 25 36 10.1016/j.bica.2012.07.003
  39. Iordanova M.D. McNally G.P. Westbrook R.F. Opioid receptors in the nucleus accumbens regulate attentional learning in the blocking paradigm J. Neurosci. 2006 26 4036 4045 10.1523/JNEUROSCI.4679-05.2006 16611820
  40. Svoboda E. McKinnon M.C. Levine B. The functional neuroanatomy of autobiographical memory: A meta-analysis Neuropsychologia 2006 44 2189 2208 10.1016/j.neuropsychologia.2006.05.023 16806314
  41. Cheyne J.A. Attention Lapses Corsini Encyclopedia of Psychology John Wiley & Sons, Inc. Hoboken, NJ, USA 2010 10.1002/9780470479216.corpsy0095
  42. Damasio A.R. The Feeling of What Happens: Body and Emotion in the Making of Consciousness Harcourt Brace San Diego, CA, USA 1999
  43. Damasio A.R. Emotions and Feelings: A Neurobiological Perspective Feelings and Emotions: The Amsterdam Symposium Manstead A.S.R. Frijda N. Fischer A. Studies in Emotion and Social Interaction; Cambridge University Press Cambridge, UK 2004 49 57
  44. Marks D.F. A General Theory of Behaviour SAGE Publications Ltd. Thousand Oaks, CA, USA 2018 10.4135/9781529714616
  45. Ritter F.E. Tehranchi F. Oury J.D. ACT-R: A cognitive architecture for modeling cognition WIREs Cogn. Sci. 2019 10 e1488 10.1002/wcs.1488
  46. Borst J.P. Anderson J.R. Using the ACT-R Cognitive Architecture in combination with fMRI data An Introduction to Model-Based Cognitive Neuroscience Forstmann B.U. Wagenmakers E.-J. Springer New York, NY, USA 2015
  47. Wirzberger M. Russwinkel N. Modeling Interruption and Resumption in a Smartphone Task: An ACT-R Approach i-com 2015 14 147 154 10.1515/icom-2015-0033
  48. Sloman A. Chrisley R. Scheutz M. The Architectural Basis of Affective States and Processes Who Needs Emotions? The Brain Meets the Robot Oxford Academic New York, NY, USA 2005
  49. Piaget J. Language and Thought of the Child: Selected Works Routledge Abingdon-on-Thames, UK 2005 Volume 5
  50. Kanske P. Kotz S.A. Emotion triggers executive attention: Anterior cingulate cortex and amygdala responses to emotional words in a conflict task Hum. Brain Mapp. 2011 32 198 208 20715084 PMC6870409 10.1002/hbm.21012
  51. Botvinick M.M. Cohen J.D. Carter C.S. Conflict monitoring and anterior cingulate cortex: An update Trends Cogn. Sci. 2004 8 539 546 10.1016/j.tics.2004.10.003
  52. Vriens T. Vassena E. Pezzulo G. Baldassarre G. Silvetti M. Meta-Reinforcement Learning reconciles surprise, value and control in the anterior cingulate cortex bioRxiv 2024 10.1101/2024.05.15.592711
  53. Rolls E.T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala Brain Struct. Funct. 2023 228 1201 1257 10.1007/s00429-023-02644-9
  54. Hall L. Hall M. Learning by Feeling Encyclopedia of the Sciences of Learning Seel N.M. Springer Boston, MA, USA 2012 10.1007/978-1-4419-1428-6_123
  55. McClay M. Sachs M.E. Clewett D. Dynamic emotional states shape the episodic structure of memory Nat. Commun. 2023 14 6533 10.1038/s41467-023-42241-2 37848429
  56. Seel N.M. Action Schemas Encyclopedia of the Sciences of Learning Seel N.M. Springer Boston, MA, USA 2012 10.1007/978-1-4419-1428-6_356

Issue

Systems, vol. 12, 2024, , https://doi.org/10.3390/systems12090364

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science