Autors: Petkova, R. R. Title: Deep Point Cloud Compression of Indoor Environment Scenes Keywords: Data augmentation, Deep point cloud compressionAbstract: Holographic-Type Communication promises real-time transmission of holographic content, ensuring fully immersive experiences for remote users. However, it requires accurate capture, efficient compression, and low-latency transmission of voluminous three-dimensional data. This paper specifically focuses on the three-dimensional point cloud compression of large indoor environment scenes, using deep autoencoder architecture. Additionally, the paper proposes an algorithm for point cloud augmentation to enhance model compression efficiency. References - "Draco 3d Graphics Compression, " https://google.github.io/draco/
- R. B. Rusu and S. Cousins, "3d is here: Point cloud library (pcl), " in 2011 IEEE international conference on robotics and automation. IEEE, 2011, pp. 1-4.S.
- S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuca, S. Lasserre, Z. Li et al., "Emerging mpeg standards for point cloud compression, " IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, 2018.
- D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai, "An overview of ongoing point cloud compression standardization activities: Video-based (v-pcc) and geometry-based (gpcc), " APSIPA Transactions on Signal and Information Processing, 2020.
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on point sets for 3d classification and segmentation, " in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical feature learning on point sets in a metric space, " Advances in neural information processing systems, vol. 30, 2017.
- P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, "Learning representations and generative models for 3d point clouds, " in International conference on machine learning. PMLR, 2018, pp. 40-49.
- W. Yan, S. Liu, T. H. Li, Z. Li, G. Li et al., "Deep autoencoder-based lossy geometry compression for point clouds, " arXiv preprint arXiv:1905.03691, 2019.
- T. Huang and Y. Liu, "3d point cloud geometry compression on deep learning, " in Proceedings of the 27th ACM international conference on multimedia, 2019, pp. 890-898.
- L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley, "Deep compression for dense point cloud maps, " IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2060-2067, 2021.
- Y. He, X. Ren, D. Tang, Y. Zhang, X. Xue, and Y. Fu, "Densitypreserving deep point cloud compression, " in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2333-2342.
- A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and Y. Zhang, "Matterport3d: Learning from rgb-d data in indoor environments, " International Conference on 3D Vision, 2017.
- G. Baruch, Z. Chen, A. Dehghan, T. Dimry, Y. Feigin, P. Fu, T. Gebauer, B. Joffe, D. Kurz, A. Schwartz, and E. Shulman, "ARKitscenes-A diverse real-world dataset for 3d indoor scene understanding using mobile RGB-d data, " in 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
- I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, "Joint 2D-3DSemantic Data for Indoor Scene Understanding, " ArXiv e-prints, 2017.
- B.S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.F. Yu, and S.K. Yeung, "Scenenn: A scene meshes dataset with annotations, " in International Conference on 3D Vision (3DV), 2016.
- Q. Zhu, L. Fan, and N. Weng, "Advancements in point cloud data augmentation for deep learning: A survey, " Pattern Recognition, p. 110532, 2024
Issue
| 2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies, ICEST 2024 - Proceedings, pp. 1-4, 2024, , https://doi.org/10.1109/ICEST62335.2024.10639723 |
Copyright IEEE |