Autors: Tzaneva, B. R. Title: Role of electrode temperature in anodic growth of sulfuric acid alumina films Keywords: Activation energy, Anodic alumina, Electrode temperature, Ionic conductivity, Sulfuric acidAbstract: Studies of the self-organized growth of nanoporous anodic aluminum oxide (AAO) films and anodization parameters have been the subject of decades of research and various theories. At the same time, temperature, being one of the most important parameters in anodizing treatments of aluminum, has been investigated only as a function of electrolyte temperature. This paper presents the results of studying the growth kinetics and morphology of AAO formed by anodization processes in 1 M H2SO4 at different anode temperatures. The activation energy of ionic conductivity for AAO determined in this study was 0.41 eV for sulfuric acid, which was greater than the activation energy of 0.34 eV for oxalic acid. The effect of anode temperature on the pore diameter (dpore) and the interpore distance (Dinter) was studied. It was demonstrated that in the temperature range from 10 to 40 °C, the dpore and Dinter did not change with the anode temperature, with values equal to 12.5 ± 0.1 nm and 52.5 ± 0.2 nm, respectively. However, when the anode (aluminum) temperature was increased to 60 °C, the dpore increased to 16 nm. The results obtained show that by increasing the temperature of the anode from 20 to 40 °C, it is possible to increase the ionic conductivity of AAO and thus achieve a greater than threefold increase in the the rate of AAO growth, without altering the porous morphology of the anodic films. References - A.K. Eessaa A.M. El-Shamy Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies Microelectron Eng 2023 279 1:CAS:528:DC%2BB3sXhtlKqsL7E 10.1016/j.mee.2023.112061
- C.A. Ku C.Y. Yu C.W. Hung C.K. Chung Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review Nanomaterials 2023 13 2853 1:CAS:528:DC%2BB3sXitlyntbnI 10.3390/nano13212853 37947698 10650129
- J.T. Domagalski E. Xifre-Perez L.F. Marsal Recent advances in nanoporous anodic alumina: Principles, engineering, and applications Nanomaterials 2021 11 430 1:CAS:528:DC%2BB3MXhtVyhsrzK 10.3390/nano11020430 33567787 7914664
- C.S. Law S.Y. Lim A.D. Abell et al. Nanoporous anodic alumina photonic crystals for optical chemo-and biosensing: Fundamentals, advances, and perspectives Nanomaterials 2018 8 788 1:CAS:528:DC%2BC1cXisFSjs7zP 10.3390/nano8100788 30287772 6215225
- S. Shingubara Fabrication of nanomaterials using porous alumina templates J Nanoparticle Res 2003 5 17 30 1:CAS:528:DC%2BD3sXkvVegurw%3D 10.1023/A:1024479827507
- W. Lee S.J. Park Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures Chem Rev 2014 114 7487 7556 1:CAS:528:DC%2BC2cXpslentL4%3D 10.1021/cr500002z 24926524
- G.D. Sulka W.J. Stepniowski Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures Electrochim Acta 2009 54 3683 3691 1:CAS:528:DC%2BD1MXktlGmsLk%3D 10.1016/j.electacta.2009.01.046
- S. Ono M. Saito M. Ishiguro H. Asoh Controlling Factor of Self-Ordering of Anodic Porous Alumina J Electrochem Soc 2004 151 B473 B478 1:CAS:528:DC%2BD2cXmt1SltLw%3D 10.1149/1.1767838
- K. Chernyakova I. Vrublevsky V. Klimas A. Jagminas Effect of Joule Heating on Formation of Porous Structure of Thin Oxalic Acid Anodic Alumina Films J Electrochem Soc 2018 165 E289 E293 1:CAS:528:DC%2BC1cXhtVWlt7bF 10.1149/2.1001807jes
- S. Ono N. Masuko Evaluation of pore diameter of anodic porous films formed on aluminum Surf Coatings Technol 2003 169–170 139 142 1:CAS:528:DC%2BD3sXjvFWktbw%3D 10.1016/S0257-8972(03)00197-X
- L. Zaraska W.J. Stȩpniowski E. Ciepiela G.D. Sulka The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid Thin Solid Films 2013 534 155 161 1:CAS:528:DC%2BC3sXktFamtLw%3D 10.1016/j.tsf.2013.02.056
- A.P. Leontiev I.V. Roslyakov K.S. Napolskii Complex influence of temperature on oxalic acid anodizing of aluminium Electrochim Acta 2019 319 88 94 1:CAS:528:DC%2BC1MXhtlSitrzN 10.1016/j.electacta.2019.06.111
- T. Aerts J.B. Jorcin I. De Graeve H. Terryn Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium Electrochim Acta 2010 55 3957 3965 1:CAS:528:DC%2BC3cXkt1Ort7c%3D 10.1016/j.electacta.2010.02.044
- T. Aerts T. Dimogerontakis I. De Graeve et al. Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film Surf Coatings Technol 2007 201 7310 7317 1:CAS:528:DC%2BD2sXkt1GgsLY%3D 10.1016/j.surfcoat.2007.01.044
- J. Li H. Wei K. Zhao et al. Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films Thin Solid Films 2020 713 1:CAS:528:DC%2BB3cXitVKgtbvL 10.1016/j.tsf.2020.138359
- E. Białek M. Włodarski M. Norek Influence of anodization temperature on geometrical and optical properties of porous anodic alumina(PAA)-Based photonic structures Materials (Basel) 2020 13 3185 1:CAS:528:DC%2BB3cXhslWltLnN 10.3390/ma13143185 32708744
- G.D. Sulka K.G. Parkoła Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid Electrochim Acta 2007 52 1880 1888 1:CAS:528:DC%2BD28XhtlCls7vF 10.1016/j.electacta.2006.07.053
- A.A. Ayalew X. Han M. Sakairi Effect of substrate temperature and electrolyte composition on the fabrication of through-hole porous AAO membrane with SF-MDC Mater Chem Phys 2024 323 1:CAS:528:DC%2BB2cXhsVOnu7rJ 10.1016/j.matchemphys.2024.129658
- T. Aerts I. De Graeve H. Terryn Control of the electrode temperature for electrochemical studies: A new approach illustrated on porous anodizing of aluminium Electrochem commun 2009 11 2292 2295 1:CAS:528:DC%2BD1MXhsVGls77O 10.1016/j.elecom.2009.10.013
- K. Chernyakova B. Tzaneva I. Vrublevsky V. Videkov Effect of Aluminum Anode Temperature on Growth Rate and Structure of Nanoporous Anodic Alumina J Electrochem Soc 2020 167 1:CAS:528:DC%2BB3cXhs1anu7rI 10.1149/1945-7111/ab9d65
- Chernyakova K, Videkov V, Tzaneva B, Vrublevsky I (2019) Monitoring of electrode temperature in exothermic electrochemical process. In: 2019 28th International Scientific Conference Electronics, ET 2019 - Proceedings. https://doi.org/10.1109/ET.2019.8878579
- J. Lee Y. Kim U. Jung W. Chung Thermal conductivity of anodized aluminum oxide layer: The effect of electrolyte and temperature Mater Chem Phys 2013 141 680 685 1:CAS:528:DC%2BC3sXhtVKnsbfP 10.1016/j.matchemphys.2013.05.058
- L. Vera-Londono A. Ruiz-Clavijo O. Caballero-Calero M. Martín-González Understanding the thermal conductivity variations in nanoporous anodic aluminum oxide Nanoscale Adv 2020 2 4591 4603 1:CAS:528:DC%2BB3cXhs1SgsbbF 10.1039/d0na00578a
- H.E. Darling Conductivity of Sulfuric Acid Solutions J Chem Eng Data 1964 9 421 426 1:CAS:528:DyaF2cXktlOjsLc%3D 10.1021/je60022a041
- K. Chernyakova I. Vrublevsky A. Jagminas V. Klimas Effect of anodic oxygen evolution on cell morphology of sulfuric acid anodic alumina films J Solid State Electrochem 2021 25 1453 1460 1:CAS:528:DC%2BB3MXltlyltb8%3D 10.1007/s10008-021-04925-x
- A.C. Crossland H. Habazaki K. Shimizu et al. Residual flaws due to formation of oxygen bubbles in anodic alumina Corros Sci 1999 41 1945 1954 1:CAS:528:DyaK1MXmsFWrtrk%3D 10.1016/S0010-938X(99)00035-9
- K. Shimizu H. Habazaki P. Skeldon et al. Role of metal ion impurities in generation of oxygen gas within anodic alumina Electrochim Acta 2002 47 1225 1228 1:CAS:528:DC%2BD38XhsV2lsrk%3D 10.1016/S0013-4686(01)00836-2
- X.F. Zhu D.D. Li Y. Song Y.H. Xiao The study on oxygen bubbles of anodic alumina based on high purity aluminum Mater Lett 2005 59 3160 3163 1:CAS:528:DC%2BD2MXns1Wisrc%3D 10.1016/j.matlet.2005.05.038
- J.M. Torrescano-Alvarez M. Curioni P. Skeldon Gravimetric Measurement of Oxygen Evolution during Anodizing of Aluminum Alloys J Electrochem Soc 2017 164 C728 C734 1:CAS:528:DC%2BC2sXhvVSju73E 10.1149/2.0371713jes
- W.J. Stȩpniowski Z. Bojar Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features Surf Coatings Technol 2011 206 265 272 1:CAS:528:DC%2BC3MXhtFaitrnO 10.1016/j.surfcoat.2011.07.020
- P. Du H. Zhu A. Braun et al. Entropy and Isokinetic Temperature in Fast Ion Transport Adv Sci 2024 11 2305065 1:CAS:528:DC%2BB3sXit1yrtbvL 10.1002/advs.202305065
- A. Tamburrano B. De Vivo M. Höijer et al. Effect of electric field polarization and temperature on the effective permittivity and conductivity of porous anodic aluminium oxide membranes Microelectron Eng 2011 88 3338 3346 1:CAS:528:DC%2BC3MXhsVGmtLrL 10.1016/j.mee.2011.08.007
- G.E. Thompson G.C. Wood Anodic Films on Aluminium 1983 23 205 329 1:CAS:528:DyaL3sXitValt70%3D 10.1016/B978-0-12-633670-2.50010-3
- M.E. Mata-Zamora J.M. Saniger Thermal evolution of porous anodic aluminas: A comparative study Rev Mex Fis 2005 51 502 509 1:CAS:528:DC%2BD2MXht1amtbbM
Issue
| Journal of Solid State Electrochemistry, 2024, Albania, https://doi.org/10.1007/s10008-024-06036-9 |
Copyright Springer |