Autors: Kamburov, V. V., Tzaneva, B. R.
Title: IMPROVEMENT OF CORROSION RESISTANCE OF TITANIUM GR2 BY NON-CONTACT ELECTRICAL SPARK DEPOSITION WITH INCONEL 718 ELECTRODES
Keywords: corrosion resist-ance, electrospark deposition, microhardness, micropores, roughness, thickness, titanium, wear resistance

Abstract: The present work is focused on a significant environmental problem related to the improvement of surface properties and corrosion resistance of technical titanium by “Inconel 718” alloy coatings. The environmentally friendly Bulgarian method of non-contact local electrospark deposition (LESD) was used, which implies the formation of coatings with low roughness and minimal defects. The relationship between the electrical parameters of the LESD modes and the topography, rough-ness, thickness, microhardness and corrosion characteristics of the coated surfaces was investigated using profilometric, metallographic and electrochemical methods. Dense and uniform coatings with an ultrafine structure and microhardness up to 12 GPa were created, whose roughness and thickness can be adjusted by the LESD modes in the range Ra = 1.5–4.5 µm, δ = 6–20 µm, respectively. The corrosion resistance of the coatings was determined by the potentiodynamic polarisation method and electrochemical impedance spectroscopy. The analysis of the obtained results clearly shows an improvement in corrosion resistance compared to the uncoated titanium substrate, since the corrosion rate, expressed in terms of corrosion current density, for some layers is up to 2 times smaller than that of titanium. Modification using LESD allows to increase the microhardness by 2.5 to 4 times that of the titanium substrate, delay corrosion and increase the life and reliability of the titanium surfaces. Appropriate energy parameters were determined to obtain coatings with predetermined thickness and roughness, increased hardness and corrosion resistance.

References

  1. A. MOHAN, G. VELRAJKUMAR, G. PRABHA, R. D. KUMAR, D. S. VIJAYAN, J. AJITH: Non-destructive Test on Reinforced Concrete Corroded Columns Produced with Flyash. J Environ Prot Ecol, 24 (1), 114 (2023).
  2. Y. MAO, Z. LIU, A. GRIGORESCU, E. CONDREA: Reverse Relation of the Industrial Growths and Environmental Emissions in China by Employment Variety. J Environ Prot Ecol, 20 (2), 620 (2019).
  3. D. MARECI, S. I. STRUGARU, C. MUNTEANU, V. GRANCEA, I. CRETESCU: Marine Environment Conservation by Using the Plasma Nitrided Austenitic Stainless Steel for Industrial Activities in the Seawater. J Environ Prot Ecol, 15 (4), 1631 (2014).
  4. N. D. TOMASHOV: Titanium and Corrosion-resistant Alloys Based on It. In: Metallurgy, M., 1985. 80 p. (in Russian).
  5. T. PENYASHKI, V. KAMBUROV, G. KOSTADINOV, A. NIKOLOV et al: Some Ways to Increase the Wear Resistance of Titanium Alloys. J Balk Tribol Assoc, 27 (1), 1 (2021).
  6. H. GARBACZ, P. WIECINSKI, M. OSSOWSKI, G. ORTORE, T. WIERZCHÓN, K. J. KURZYDŁOWSKI: Surface engineering techniques used for improving the mechanical and Tribological Properties of the Ti6A14V Alloy. Surf Coat Technol, (202), 2453 (2008).
  7. F. ALMERAYA-CALDERÓN, J. M. JÁQUEZ-MUÑOZ, E. MALDONADO-BANDALA, J. CABRAL-MIRAMONTES, D. NIEVES-MENDOZA, J. OLGUI-COCA, L. D. LOPEZ-LEON, F. ESTUPIÑÁN-LÓPEZ, A. LIRA-MARTÍNEZ, C. GAONATIBURCIO: Corrosion Resistance of Titanium Alloys Anodized in Alkaline Solutions. Metals, 13, 1510 (2023).
  8. I. L. POBOL, I. G. OLESHUK, A. N. DROBOV, G. SUN FEN: Investigation of Formation of Hardened Layer on Titanium Alloys by the Method of Ion-Plasma Nitriding. Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series, 64 (1), 25 (2019).
  9. J. GRABARCZYK, D. BATORY, W. KACZOROWSKI, B. PĄZIK, B. JANUSZEWICZ, B. BURNAT, M. CZERNIAK-RECZULSKA, M. MAKÓWKA, P. NIEDZIELSKI: Comparison of Different Thermo-chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties. Materials, 13 (22), 5192 (2020).
  10. E. YANKOV, M. P. NIKOLOVA, D. DECHEV, N. IVANOV, T. HIKOV, S. VALKOV, V. DIM-ITROVA, M. YORDANOV, P. PETROV: Changes in the Mechanical Properties of Ti Samples with TiN and TiN/TiO2 Coatings Deposited by Different PVD Methods. IOP Conf Ser Mater Sci Eng, 416 (1), art. no. 012062. (2018).
  11. C. BARILE, C. CASAVOLA, G. PAPPALETTERA, G. RENNA, GIOVANNI PAPPALETTE: Advancements in Electrospark Deposition (ESD) Technique: a Short Review. Coatings, 12 1536 (2022).
  12. J. WANG, M. ZHANG, S. DAI, L. ZHU: Research Progress in Electrospark Deposition Coatings on Titanium Alloy Surfaces: a Short Review. Coatings, 13, 308 (2023).
  13. V. V. MIKHAILOV, A. E. GITLEVICH, A. D. VERKHOTUROV, A. I. MIKHAYLYUK, A. V. BELYAKOVSKY, L. A. KONEVTSOV: Electrospark Alloying of Titanium and Its Alloys, Physical and Technological Aspects and the Possibility of Practical Use, Short Review. Surf Eng Appl Electrochem, 49 (5), 21 (2013).
  14. V. KOSHURO, M. FOMINA, A. FOMINE, I. RODIONOV: Metal Oxide (Ti, Ta)–(TiO2, TaO) Coatings Produced on Titanium Using Electro Spark Alloying and Modified by Induction Heat Treatment. Compos Struct, 196, 1 (2018).
  15. Z. O. DOLGIY, W. Z. SHAO, A. V. KOZYR, S. V. MARTYNOV: Formation of Two–layer Heat–Resistant Coatings on TC11 Alloy by Electro–spark Alloying Method. Adv Mater Res, 538, 175 (2012).
  16. L. P. KORNIENKO, G. P. CHERNOVA, V. V. MIKHAILOV, A. E. GITLEVICH: Using the electrospark aloying method to increase corrosion resistance titanium surfaces, Electronic processing of materials,, 47 (1), 14–23 (2011), in Russian.
  17. A. E. KUDRYASHOV, Zh. V. EREMEEVA, E. A. LEVASHOV, Yu. V. LOPATIN, A. V. SEV-OSTYANOVA, E. I. ZAMULAEVA: On Application of Carbon-containing Electrode Materials in Technology of Electrospark Alloying: Part 1. Peculiarities of Coating Formation Using Elec-trospark Treatment of Titanium Alloy OT4-1. Surf Eng Appl Electrochem, 54 (5), 437 (2018).
  18. M. GENG, W. WANG, X. ZHANG: Microstructures and Properties of Ni/Ti(C, N) Composite Cermet Coating Prepared by Electrospark Deposition. Surf Technol, 49, 222 (2020).
  19. E. A. LEVASHOV, E. I. ZAMULAEVA, A. E. KUDRYASHOV et al: Materials Science and Technological Aspects of Electrospark Deposition of Nanostructured WC-Co Coatings onto Titanium Substrates. Plasma Process Polym, 4 (3), 293 (2007).
  20. J. KOVÁČIK, P. BAKSA, Š. EMMER: Electro Spark Deposition of TiB2 Layers on Ti6Al4V Alloy. Acta Metallurgica Slovaca, 22, (10), 52 (2016).
  21. X. HONG, K. FENG, Y. F. TAN, X. WANG, H. TAN: Effects of Process Parameters on Micro-structure and Wear Resistance of TiN Coatings Deposited on TC11 Titanium Alloy by Electro Spark Deposition. Trans Nonferrous Met Soc China, 27, 1767 (2017).
  22. M. A. TEPLENKO, I. A. PODCHERNYAEVA, A. D. PANASYUK: Structure and Wear Resistance of Coatings on Titanium Alloy and Steels Obtained by Electro Spark Alloying with AlN–ZrB2 Material. Powder Metall Met Ceram, 41, 154 (2002).
  23. T. PENYASHKI, G. KOSTADINOV, M. KANDEVA, V. KAMBUROV, A. NIKOLOV, R. DIM-ITROVA: Abrasive and Erosive Wear of TI6Al4V Alloy with Electrospark Deposited Coatings of Multicomponent Hard Alloys Materials based of WC and TiB2. Coatings, 13, 215 (2023).
  24. Eu. LAUDACESCU, I. RAMADAN, M. G. PETRESCU et al.: Effect of the Surface Roughness on the Corrosion Behaviour of S235J2G3 Carbon Steel. J Balk Tribol Assoc, 22 (2A), 1753 (2016).
  25. A. T. TABRIZI, H. AGHAJANI & P. MIRZAPOUR: Estimation of the effect of process parameters of plasma nitriding on the surface hardness and corrosion behaviour of pure Titanium by Artificial Neuron Network. J Balk Tribol Assoc, 28 (5), 597 (2022).
  26. S. K. MUKANOV, A. E. KUDRYASHOV, M. I. PETRZHIK: Surface Modification of Titanium VT6 Alloy Obtained by Additive Technologies Using Reactive Electrospark Treatment. Physics and Chemistray of Materuials Processing, (3), 30 (2022) (in Russian).
  27. T. G. PENYASHKI, V. V. KAMBUROV, G. D. KOSTADINOV, M. K. KANDEVA, R. B. DIM-ITROVA et al.: Possibilities and Prospects for Improving the Tribological Properties of Titanium and Its Alloys by Electrospark Deposition. Surf Eng Appl Electrochem, 58 (2), 135 (2022).
  28. A. A. BURKOV, E. R. ZAIKOVA, M. I. DVORNIK: Deposition of Ti–Ni–Zr–Mo–Al–C Composite Coatings on the Ti6Al4V Alloy by Electrospark Alloying in a Granule Medium. Surf Eng Appl Electrochem, 63, 18 (2018).
  29. C. B. LI, D. H. CHEN, W. W. CHEN, L. WANG, D. LUO: Corrosion Behaviour of TiZrNiCuBe Metallic Glass Coatings Synthesized by Electro Spark Deposition. Corros Sci, 84, 96 (2014).
  30. P. V. KIRYUKHANTSEV–KORNEEV, A. N. SHEVEYKO, N. V. SHVINDINA, E. A. LEV-ASHOV, D. V. SHTANSKY: Comparative Study of Ti–C–Ni–Al, Ti–C–Ni–Fe, and Ti–C–NiAl/ Ti–C–Ni–Fe Coatings Produced by Magnetron Sputtering, Electro–Spark Deposition, and a Combined Two–Step Process. Ceram Int, 44, 7637 (2018).
  31. Y. LIU, D. WANG, C. DENG, L. HUO, L. WANG, R. FANG: Novel Method to Fabricate Ti–Al Intermetallic Compound Coatings on Ti–6Al–4V Alloy by Combined Ultrasonic Impact Treatment and Electrospark Deposition. J Alloys Compd, 628, 208 (2015).
  32. XIAO-RONG WANGA, ZHAO-QIN WANGC at al.: Mass Transfer Trends of AlCoCrFeNi High-entropy Alloy Coatings onTC11 Substrate via Electrospark − Computer Numerical Control Deposition. J Mater Process Technol, 241, 93 (2017).
  33. G. Q. SU, T. YOU, C. H. ZHANG: Research on Depositing Ni45 Alloy on Titanium Alloy Surface by Electro Spark Deposition. China Foundry, 5, 244 (2008).
  34. S. A. PYACHIN, A. A. BURKOV: Creation of Intermetallic Coatings by Electrospark Deposition of Titanium and Aluminum on a Steel Substrate. Electron Mater Process, 51 (2), 16 (2015).
  35. B. ANTONOV: Device for Local Electric-Spark Layering of Metals and Alloys by Means of Rotating Electrode. US Patent № 3832514, August 27, 1974.
  36. B. ANTONOV, St. PANAYOTOV, O. LYUTAKOV: Apparatus for the Spark Deposition of Metals. US Patent 4226697, October,1980.
  37. B. JÖNSSON, S. HOGMARK, Hardness Measurements of Thin Films. Thin Solid Film, 114, 257 (1984).
  38. Y. QIAO, D. XU, S. WANG, Y. MA, J. CHEN, Y. WANG, H. ZHOU: Corrosion and Tensile Behaviours of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V Titanium Alloys. Metals, 9, 1213, (2019).
  39. Y. TANG, X. SHEN, Y. QIAO et al: Corrosion Behaviour of a Selective Laser Melted Inconel 718 Alloy in a 3.5 wt.% NaCl Solution. J Mater Eng Perform, 30, 5506 (2021).

Issue

Journal of Environmental Protection and Ecology, vol. 25, pp. 1066-1080, 2024, , ISSN 13115065

Copyright Scibulcom Ltd.

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus