Autors: Aleksandrova, M. P.
Title: Investigating the role of palladium electrical contacts in interactions with carbyne nanomaterial solid matter
Keywords: carbyne, energy release, nanocoatings, palladium electrodes, traps states

Abstract: Copyright Introduction: Traps at the interface between carbyne and palladium nanocoatings, produced at different growth conditions, are explored by current-voltage characteristics, scanning electron microscopy and thermal stimulation of charges for evaluation of their nature. It was found that the Pd films can form an Ohmic contact with the carbyne at certain deposition conditions and such deviated from the Ohmic behavior according to the RF sputtering voltage. This growth parameter was found to affect the interfacial traps formation on the carbyne surface, which is important feature for the charge trapping and releasing properties for hydrogen isotopes in the context of the energy release applications. Methods, Results and Discussion: The sputtering voltages of 0.5 kV and 0.7 kV were found unsuitable for controlled trap formation. Based on the currentvoltage and thermally stimulated current (TSC) measurements, a sputtering voltage of 0.9 kV appeared to be more favorable compared to 0.5 kV and 0.7 kV. At 0.9 kV thermal activation of charge carriers are enabled at lower thermal energies, showing a distinct change in TSC behavior correlated to trap activation.

References

  1. Aleksandrova M. Nikolov N. Pandiev I. (2011). Thermo-stimulation of charges by peltier element for trap analysis in polymer layers. Int. J. Polym. Anal. Ch. 16, 221–227. 10.1080/1023666x.2011.569170
  2. Anikina E. Banerjee A. Beskachko V. Ahuja R. (2020). Li-decorated carbyne for hydrogen storage: charge induced polarization and van't Hoff hydrogen desorption temperature. Sustain. Energy Fuels 4, 691–699. 10.1039/c9se00706g
  3. Checchetto R. Bazzanella N. Patton B. Miotello A. (2004). Palladium membranes prepared by r.f. magnetron sputtering for hydrogen purification. Surf. Coat. Technol. 177, 73–79. 10.1016/j.surfcoat.2003.06.001
  4. Compagnini G. Battiato S. Puglisi O. Baratta G. A. Strazzulla G. (2005). Ion irradiation of sp rich amorphous carbon thin films: a vibrational spectroscopy investigation. Carbon 43, 3025–3028. 10.1016/j.carbon.2005.06.025
  5. Ferrari A. C. Robertson J. (2001). Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414. 10.1103/physrevb.64.075414
  6. Kucherik A. Antipov A. Kutrovskaya S. Osipov A. Povolotckaia A. Arakelian S. (2018). Metal-carbyne clusters for SERS realization. J. Phys. Conf. Ser. 951, 012020. 10.1088/1742-6596/951/1/012020
  7. Liu H. Yang Y. Xing M. Fan Q. (2024). Two-dimensional carbon allotrope with remarkable electron mobility and tunable band gap under uniaxial strain engineering. Res. Phys. 58, 107435. 10.1016/j.rinp.2024.107435
  8. Miao Z. Ge Z. Gu D. Wang L. Zhang T. (2024). Space charge limited current in organic materials with free and trapped charges. Phys.Lett. A 495, 129305. 10.1016/j.physleta.2023.129305
  9. Piedade A. P. Cangueiro L. (2020). Influence of carbyne content on the mechanical performance of nanothick amorphous carbon coatings. Nanomaterials 10, 780–799. 10.3390/nano10040780
  10. Teyssedre G. Mendoza-Lopez D. Laurent C. Boudou L. Berquez L. Zheng F. (2021). “Charge trap spectroscopies in polymer dielectrics: application to BOPP,” in 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), October 2021 (Indonesia: Bandung), 57–64.
  11. Tomov R. Aleksandrova M. (2023). “Palladium films as electrodes on carbyne-based devices,” in IEEE 33rd International Conference on Microelectronics, MIEL, Nish, Serbia, October, 2023.
  12. Yang G. (2022). Synthesis, properties, and applications of carbyne nanocrystals. Mat. Sci. Eng. R. Rep. 151, 100692. 10.1016/j.mser.2022.100692

Issue

Frontiers in Materials, vol. 11, 2024, , https://doi.org/10.3389/fmats.2024.1422398

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science