Autors: Tzaneva, B. R., Mateev, V. M., Stefanov, B. I., Aleksandrova, M. P., Iliev, I. C.
Title: Electrochemical Investigation of PEDOT:PSS/Graphene Aging in Artificial Sweat
Keywords: aging, artificial sweat, conductive polymer, electrochemical stability, spray coating

Abstract: Herein, we investigate the potential application of a composite consisting of PEDOT:PSS/Graphene, deposited via spray coating on a flexible substrate, as an autonomous conducting film for applications in wearable biosensor devices. The stability of PEDOT:PSS/Graphene is assessed through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear polarization (LP) during exposure to an artificial sweat electrolyte, while scanning electron microscopy (SEM) was employed to investigate the morphological changes in the layer following these. The results indicate that the layers exhibit predominant capacitive behavior in the potential range of −0.3 to 0.7 V vs. Ag/AgCl, with a cut-off frequency of approximately 1 kHz and retain 90% capacity after 500 cycles. Aging under exposure to air for 6 months leads only to a minor increase in impedance, demonstrating potential for storage under non-demanding conditions. However, prolonged exposure (>48 h) to the artificial sweat causes significant degradation, resulting in an impedance increase of over 1 order of magnitude. The observed degradation raises important considerations for the long-term viability of these layers in wearable biosensor applications, prompting the need for additional protective measures during prolonged use. These findings contribute to ongoing efforts to enhance the stability and reliability of conducting materials for biosensors in health care and biotechnology applications.

References

  1. Vacca A. Mascia M. Rizzardini S. Corgiolu S. Palmas S. Demelas M. Bonfiglio A. Ricci P.C. Preparation and characterisation of transparent and flexible PEDOT:PSS/PANI electrodes by ink-jet printing and electropolymerisation RSC Adv. 2015 5 79600 79606 10.1039/C5RA15295J
  2. Mousavi H. Ferrari L.M. Whiteley A. Ismailova E. Kinetics and Physicochemical Characteristics of Electrodeposited PEDOT:PSS Thin Film Growth Adv. Electron. Mater. 2023 9 2201282 10.1002/aelm.202201282
  3. Donahue M.J. Sanchez-Sanchez A. Inal S. Qu J. Owens R.M. Mecerreyes D. Malliaras G.G. Martin D.C. Tailoring PEDOT properties for applications in bioelectronics Mater. Sci. Eng. R Rep. 2020 140 100546 10.1016/j.mser.2020.100546
  4. Sanchez-Sanchez A. del Agua I. Malliaras G.G. Mecerreyes D. Conductive Poly(3,4-Ethylenedioxythiophene) (PEDOT)-Based Polymers and Their Applications in Bioelectronics Smart Polymers and Their Applications 2nd ed. Aguilar M.R. Román J.S. Woodhead Sawston, UK 2019 191 218 10.1016/B978-0-08-102416-4.00006-5
  5. Kaur G. Kaur A. Kaur H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors Polym. Plast. Technol. Mater. 2021 60 504 521 10.1080/25740881.2020.1844233
  6. Lunghi A. Mariano A. Bianchi M. Dinger N.B. Murgia M. Rondanina E. Toma A. Greco P. Di Lauro M. Santoro F. et al. Flexible neural interfaces based on 3D PEDOT:PSS micropillar arrays Adv. Mater. Interfaces 2022 9 2200709 10.1002/admi.202200709
  7. Sakthinathan I. Yamasaki N. Barreca D. Maccato C. Ueda T. McCormac T. Wells-Dawson type polyoxometalate, [S2W18O62]4−-doped poly(3,4-ethylenedioxythiophene) films: Voltammetric behaviour and applications to selective bromate detection Electrochim. Acta 2023 462 142689 10.1016/j.electacta.2023.142689
  8. Tian F. Yu J. Wang W. Zhao D. Cao J. Zhao Q. Wang F. Yang H. Wu Z. Xu J. et al. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes J. Colloid Interface Sci. 2023 638 339 348 10.1016/j.jcis.2023.01.146 36746052
  9. Hik F. Taatizadeh E. Takalloo S.E. Madden J.D. Fast electrochemical response of PEDOT:PSS electrodes through large combined increases to ionic and electronic conductivities Electrochim. Acta 2023 468 143136 10.1016/j.electacta.2023.143136
  10. Seiti M. Giuri A. Corcione C.E. Ferraris E. Advancements in tailoring PEDOT:PSS properties for bioelectronic applications: A comprehensive review Biomater. Adv. 2023 154 213655 10.1016/j.bioadv.2023.213655 37866232
  11. Moniz M.P. Rafique A. Carmo J. Oliveira J.P. Marques A. Ferreira I.M.M. Baptista A.C. Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors ACS Appl. Mater. Interfaces 2023 15 30727 30741 10.1021/acsami.3c03903
  12. Castagnola V. Bayon C. Descamps E. Bergaud C. Morphology and conductivity of PEDOT layers produced by different electrochemical routes Synth. Met. 2014 189 7 16 10.1016/j.synthmet.2013.12.013
  13. Saha A. Ohori D. Sasaki T. Itoh K. Oshima R. Samukawa S. Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS Nanomaterials 2024 14 95 10.3390/nano14010095 38202550
  14. Ge Y. Jalili R. Wang C. Zheng T. Chao Y. Wallace G.G. A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications Electrochim. Acta 2017 235 348 355 10.1016/j.electacta.2017.03.069
  15. Wustoni S. Saleh A. El-Demellawi J.K. Koklu A. Hama A. Druet V. Wehbe N. Zhang Y. Inal S. MXene improves the stability and electrochemical performance of electropolymerized PEDOT films APL Mater. 2020 8 121105 10.1063/5.0023187
  16. Schander A. Teßmann T. Strokov S. Stemmann H. Kreiter A.K. Lang W. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Orlando, FL, USA 16–20 August 2016 6174 6177 10.1109/EMBC.2016.7592138
  17. Boehler C. Oberueber F. Schlabach S. Stieglitz T. Asplund M. Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge ACS Appl. Mater. Interfaces 2017 9 189 197 10.1021/acsami.6b13468 27936546
  18. Ouyang L. Wei B. Kuo C.-c. Pathak S. Farrell B. Martin D.C. Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2) Sci. Adv. 2017 3 e1600448 10.1126/sciadv.1600448 28275726
  19. Qu J. Garabedian N. Burris D.L. Martin D.C. Durability of Poly(3,4-ethylenedioxythiophene) (PEDOT) films on metallic substrates for bioelectronics and the dominant role of relative shear strength J. Mech. Behav. Biomed. Mater. 2019 100 103376 10.1016/j.jmbbm.2019.103376
  20. Inoue A. Yuk H. Lu B. Zhao X. Strong adhesion of wet conducting polymers on diverse substrates Sci. Adv. 2020 6 eaay5394 10.1126/sciadv.aay5394 32219162
  21. Koutsouras D.A. Gkoupidenis P. Stolz C. Subramanian V. Malliaras G.G. Martin D.C. Impedance Spectroscopy of Spin-Cast and Electrochemically Deposited PEDOT:PSS Films on Microfabricated Electrodes with Various Areas ChemElectroChem 2017 4 2321 2327 10.1002/celc.201700297
  22. Abdullayeva N. Sankir M. Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance Materials 2017 10 586 10.3390/ma10060586
  23. Sriprachuabwong C. Karuwan C. Wisitsorrat A. Phokharatkul D. Lomas T. Sritongkhamb P. Tuantranont A. Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing J. Mater. Chem. 2012 22 5478 5485 10.1039/C2JM14005E
  24. Boehler C. Carli S. Fadiga L. Stieglitz T. Asplund M. Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics Nat. Protoc. 2020 15 3557 3578 10.1038/s41596-020-0389-2 33077918
  25. Wahyuni W.T. Putra B.R. Rahman H.A. Anindya W. Hardi J. Rustami E. Ahmad S.N. Electrochemical Sensors based on Gold–Silver Core–Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection ACS Omega 2024 9 2896 2910 10.1021/acsomega.3c08349 38250352
  26. Liu Z. Parvez K. Li R. Dong R. Feng X. Müllen K. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors Adv. Mater. 2014 27 669 675 10.1002/adma.201403826 25448315
  27. Eawwiboonthanakit N. Jaafar M. Ahmad Z. Ohtake N. Lila B. Fabrication of PEDOT: PSS/graphene conductive ink printed on flexible substrate Solid State Phenomen. 2017 264 70 73 10.4028/www.scientific.net/SSP.264.70
  28. Popov V.I. Kotin I.A. Nebogatikova N.A. Smagulova S.A. Antonova I.V. Graphene-PEDOT:PSS Humidity Sensors for High Sensitive, Low-Cost, Highly-Reliable, Flexible, and Printed Electronics Materials 2019 12 3477 10.3390/ma12213477 31652892
  29. Faruk O. Adak B. Recent advances in PEDOT:PSS integrated graphene and MXene-based composites for electrochemical supercapacitor applications Synth. Met. 2023 297 117384 10.1016/j.synthmet.2023.117384
  30. Tzaneva B. Aleksandrova M. Mateev V. Stefanov B. Iliev I. Electrochemical Properties of PEDOT:PSS/Graphene Conductive Layers in Artificial Sweat Sensors 2024 24 39 10.3390/s24010039 38202900
  31. Park C. Yoo D. Lee J.J. Choi H.H. Kim J.H. Enhanced power factor of poly (3,4-ethyldioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)/RTCVD graphene hybrid films Org. Electron. 2016 36 166 170 10.1016/j.orgel.2016.05.038
  32. Yoo D. Kim J. Kim J.H. Direct synthesis of highly conductive poly (3,4-ethylenedioxythiophene):poly (4-styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems Nano Res. 2014 7 717 730 10.1007/s12274-014-0433-z
  33. Curto V.F. Fay C. Coyle S. Byrne R. O’Toole C. Barry C. Hughes S. Moyna N. Diamond D. Benito-Lopez F. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids Sens. Actuators B Chem. 2012 171–172 1327 1334 10.1016/j.snb.2012.06.048
  34. Nasera S.A. Hameed A.A. Husseinc M.A. Corrosion Behavior of Some Jewelries in Artificial Sweat AIP Conf. Proc. 2020 2213 020030 10.1063/5.0000111
  35. Vanhoestenberghe A. Donaldson N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices J. Neural Eng. 2013 10 031002 10.1088/1741-2560/10/3/031002 23685410
  36. Da Silva L.M. De Faria L.A. Boodts J.F.C. Determination of the morphology factor of oxide layers Electrochim. Acta 2001 47 395 403 10.1016/S0013-4686(01)00738-1
  37. Pan Q. Wu Q. Sun Q. Zhou X. Cheng L. Zhang S. Yuan Y. Zhang Z. Ma J. Zhang Y. et al. Biomolecule-friendly conducting PEDOT interface for long-term bioelectronic devices Sens. Actuators B Chem. 2022 373 132703 10.1016/j.snb.2022.132703
  38. Barron S.L. Oldroyd S.V. Saez J. Chernaik A. Guo W. McCaughan F. Bulmer D. Owens R.M. A Conformable Organic Electronic Device for Monitoring Epithelial Integrity at the Air Liquid Interface Adv. Mater. 2023 36 2306679 10.1002/adma.202306679 38061027
  39. Magar H.S. Hassan R.Y. Mulchandani A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications Sensors 2021 21 6578 10.3390/s21196578 34640898
  40. Rubinson J.F. Kayinamura Y.P. Charge transport in conducting polymers: Insights from impedance spectroscopy Chem. Soc. Rev. 2009 38 3339 3347 10.1039/B904083H 20449053
  41. Hernández H.H. Reynoso A.M.R. González J.C.T. Morán C.O.G. Hernández J.G.M. Ruiz A.M. Hernández J.M. Cruz R.O. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels Electrochemical Impedance Spectroscopy El-Azazy M. Min M. Annus P. IntechOpen London, UK 2020 10.5772/intechopen.94470
  42. Patra S. Munichandraiah N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate J. Appl. Polym. Sci. 2007 106 1160 1171 10.1002/app.26675
  43. Guo D. Wang L. Wang X. Xiao Y. Wang C. Chen L. Ding Y. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator Sens. Actuators B Chem. 2020 305 127488 10.1016/j.snb.2019.127488
  44. Peringath A.R. Bayan M.A.H. Beg M. Jain A. Pierini F. Gadegaard N. Hogg R. Manjakkal L. Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors J. Energy Storage 2023 73 108811 10.1016/j.est.2023.108811
  45. Dobashi Y. Fannir A. Farajollahi M. Mahmoudzadeh A. Usgaocar A. Yao D. Nguyen G.T.M. Plesse C. Vidal F. Madden J.D.W. Ion transport in polymer composites with non-uniform distributions of electronic conductors Electrochim. Acta 2017 247 149 162 10.1016/j.electacta.2017.06.141
  46. Lefrou C. Fabry P. Poignet J.C. Electrochemistry: The Basics, with Examples Springer Berlin/Heidelberg, Germany 2012
  47. Hong W. Xu Y. Lu G. Li C. Shi G. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells Electrochem. Comm. 2008 10 1555 1558 10.1016/j.elecom.2008.08.007
  48. Zhou J. Anjum D.H. Lubineau G. Li E.Q. Thoroddsen S.T. Unraveling the order and disorder in poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) nanofilms Macromolecules 2015 48 5688 5696 10.1021/acs.macromol.5b00851
  49. Thaning E.M. Asplund M.L. Nyberg T.A. Inganäs O.W. von Holst H. Stability of poly (3,4-ethylene dioxythiophene) materials intended for implants J. Biomed. Mater. 2010 93B 407 415 10.1002/jbm.b.31597

Issue

Polymers, vol. 16, pp. 1706, 2024, , https://doi.org/10.3390/polym16121706

Copyright MDPI

Цитирания (Citation/s):
1. Suchanek, M.; Krakowska, A.; Paczosa-Bator, B.; Piech, R. Highly Sensitive Trimetazidine Determination Using Composite Yttria-Stabilized Zirconia Doped with Titanium Oxide–Carbon Black Biosensor. Materials 2024, 17, 5556. - 2024 - в издания, индексирани в Scopus и/или Web of Science
2. Myriam Barrejón, Hugo Vara, Alexandra Alves-Sampaio, Helena Uceta, Jorge E. Collazos-Castro, Electroactive covalent linkers for enhancing conducting polymer adhesion, charge transfer, and biological integration of PEDOT-coated carbon microfibers, Carbon, 2024, 119820 - 2024 - в издания, индексирани в Scopus и/или Web of Science
3. Bhawna, Rani, G, Dhull, SB, Suman, Kumar, H, Kumar, N, Boosting supercapacitor performance and thermal stability: transforming PANI nanorods into a ternary interconnected mesh structure, EMERGENT MATERIALS, 2025, issn: 2522-5731, eissn: 2522-574X, doi: 10.1007/s42247-025-01080-1 - 2025 - в издания, индексирани в Scopus и/или Web of Science
4. Fan, YJ, Naresh, N, Zhu, YJ, Wang, MQ, Boruah, BD, Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors, ACS NANO, vol 19, 2025, issn: 1936-0851, eissn: 1936-086X, doi: 10.1021/acsnano.5c00917, pmid: MEDLINE:40132082 - 2025 - в издания, индексирани в Scopus и/или Web of Science
5. Du, LJ, Quan, B, Xu, ZX, Sun, X, Luo, Y, Travas-Sejdic, J, Zhu, BC, Biomass-derived laser-induced graphene doped with nitrogen and sulfur for enhanced supercapacitor performance, CARBON, vol 238, 2025, issn: 0008-6223, eissn: 1873-3891, art_no: ARTN 120225, doi: 10.1016/j.carbon.2025.120225 - 2025 - в издания, индексирани в Scopus и/или Web of Science
6. Chauhan, D, Gupta, R, Verma, N, Selective detection of riboflavin biomolecule via electroreduction over laser induced graphene-anchored iron nanoparticles using spectroelectrochemistry, ELECTROCHIMICA ACTA, vol 513, 2025, issn: 0013-4686, eissn: 1873-3859, art_no: ARTN 145603, doi: 10.1016/j.electacta.2024.145603 - 2025 - в издания, индексирани в Scopus и/или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science