Autors: Tomovic M.V., Klimenta D.O., Milovanovic M.J., Perovic B.D., Hinov, N. L. Title: Optimal Design and Techno-Economic Analysis of a Hybrid System to Supply a Remote Fishpond with Electricity and Heat Keywords: Excess electricity, Fishpond, Hybrid system, Optimisation, Techno-economic analysis, Thermal load controller (TLC)Abstract: This paper deals with the design of a hybrid system for the generation of electricity and heat that will supply a remote fishpond in eastern Serbia. The proposed hybrid system consists of a micro-hydro power plant (MHPP), a photovoltaic (PV) generator, a combined heat and power (CHP) unit with one diesel generator, batteries, a converter, a thermal load controller (TLC), and a boiler. A comprehensive techno-economic analysis is performed in the HOMER Pro software, which evaluated and compared 12 possible configurations with different combinations of system components. The results show that the optimal system has the lowest total net present cost (NPC) and the lowest levelized cost of energy (COE) amounting to 284421.0 $ and 0.178 $/kWh, respectively. Compared to a diesel/batteries/converter/boiler hybrid system, the proposed system produces 65.4 % less greenhouse gas (GHG) emissions, while the shares of electricity, heat, and renewable energy generation are increased by 31.1 %, 5.0 %, and 51.2 %, respectively. It is shown that covering the demand for heat by regenerating the waste heat from the diesel generator and excess electricity from renewables contributes to reducing the total cost of the system and the GHG emissions. This finding finally emphasised the necessity of applying TLCs in off-grid hybrid systems. References - J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, "A global assessment: Can renewable energy replace fossil fuels by 2050?", Sustainability, vol. 14, no. 8, p. 4792, 2022. DOI: 10.3390/su14084792.
- Ministry of Mining and Energy of the Republic of Serbia, "Incentive measures for preferential electricity producers - Feed-in tariff" (in Serbian), "Official Gazette of the RS", no. 24/14, 1 Mar. 2014. [Online]. Available: https://arhiva.mre.gov.rs/latinica/faq-energetska-efikasnost-obnovljivi-izvori.php
- J. H. Williams et al., "The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity", Science, vol. 335, no. 6064, pp. 53-59, 2012. DOI: 10.1126/science.1208365.
- M. Tomović, M. Gajić, D. Klimenta, and M. Jevtić, "Optimal design of a hybrid power system for a remote fishpond based on hydro-turbine performance parameters", Electronics, vol. 12, no. 20, p. 4254, 2023. DOI: 10.3390/electronics12204254.
- I. Prasetyaningsari, A. Setiawan, and A. A. Setiawan, "Design optimization of solar powered aeration system for fish pond in Sleman Regency, Yogyakarta by HOMER software", Energy Procedia, vol. 32, pp. 90-98, 2013. DOI: 10.1016/j.egypro.2013.05.012.
- S. Vendoti, M. Muralidhar, and R. Kiranmayi, "Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software", Environ. Dev. Sustain., vol. 23, no. 1, pp. 351-372, 2021. DOI: 10.1007/s10668-019-00583-2.
- B. K. Das, N. Hoque, S. Mandal, T. K. Pal, and M. A. Raihan, "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh", Energy, vol. 134, pp. 775-788, 2017. DOI: 10.1016/j.energy.2017.06.024.
- M. Hossain, S. Mekhilef, and L. Olatomiwa, "Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia", Sustain. Cities Soc., vol. 28, pp. 358-366, 2017. DOI: 10.1016/j.scs.2016.10.008.
- M. J. Khan, A. K. Yadav, and L. Mathew, "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India", Renew. Sustain. Energy Rev., vol. 76, pp. 577-607, 2017. DOI: 10.1016/j.rser.2017.03.076.
- J. D. D. Niyonteze, F. Zou, G. N. O. Asemota, S. Bimenyimana, and G. Shyirambere, "Key technology development needs and applicability analysis of renewable energy hybrid technologies in off-grid areas for the Rwanda power sector", Heliyon, vol. 6, no. 1, p. e03300, 2020. DOI: 10.1016/j.heliyon.2020.e03300.
- C.-T. Tsai, T. M. Beza, E. M. Molla, and C.-C. Kuo, "Analysis and sizing of mini-grid hybrid renewable energy system for islands", IEEE Access, vol. 8, pp. 70013-70029, 2020. DOI: 10.1109/ACCESS.2020.2983172.
- Md. F. Ishraque et al., "Techno-economic and power system optimization of a renewable rich islanded microgrid considering different dispatch strategies", IEEE Access, vol. 9, pp. 77325-77340, 2021. DOI: 10.1109/ACCESS.2021.3082538.
- S. A. Goudarzi, F. Fazelpour, G. B. Gharehpetian, and M. A. Rosen, "Techno-economic assessment of hybrid renewable resources for a residential building in Tehran", Environ. Prog. Sustain. Energy, vol. 38, no. 5, p. 13209, 2019. DOI: 10.1002/ep.13209.
- G. Zhang, C. Xiao, and N. Razmjooy, "Optimal operational strategy of hybrid PV/wind renewable energy system using Homer: A case study", Int. J. Ambient Energy, vol. 43, no. 1, pp. 3953-3966, 2022. DOI: 10.1080/01430750.2020.1861087.
- J. O. Oladigbolu, M. A. M. Ramli, and Y. A. Al-Turki, "Optimal design of a hybrid PV solar/micro-hydro/diesel/battery energy system for a remote rural village under tropical climate conditions", Electronics, vol. 9, no. 9, p. 1491, 2020. DOI: 10.3390/electronics9091491.
- C. Altin, "Differential evolution algorithm based very fast renewable energy system optimisation tool design", Elektron. ir Elektrotechnika, vol. 29, no. 4, pp. 44-53, 2023. DOI: 10.5755/j02.eie.33872.
- H. S. Das, C. W. Tan, A. H. M. Yatim, and K. Y. Lau, "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia", Renew. Sustain. Energy Rev., vol. 76, pp. 1332-1347, 2017. DOI: 10.1016/j.rser.2017.01.174.
- L.-N. Xing, H.-L. Xu, A. K. Sani, Md. A. Hossain, and S. M. Muyeen, "Techno-economic and environmental assessment of the hybrid energy system considering electric and thermal loads", Electronics, vol. 10, no. 24, p. 3136, 2021. DOI: 10.3390/electronics10243136.
- C. A. Nallolla and V. Perumal, "Optimal design of a hybrid off-grid renewable energy system using techno-economic and sensitivity analysis for a rural remote location", Sustainability, vol. 14, no. 22, p. 15393, 2022. DOI: 10.3390/su142215393.
- M. R. Akhtari and M. Baneshi, "Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer", Energy Convers. Manag., vol. 188, pp. 131-141, 2019. DOI: 10.1016/j.enconman.2019.03.067.
- B. K. Das and M. Hasan, "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat", Energy, vol. 214, art. 119036, 2021. DOI: 10.1016/j.energy.2020.119036.
- M. R. Elkadeem et al., "Feasibility analysis and optimization of an energy-water-heat nexus supplied by an autonomous hybrid renewable power generation system: An empirical study on airport facilities", Desalination, vol. 504, art. 114952, 2021. DOI: 10.1016/j.desal.2021.114952.
- H. Elsaraf, M. Jamil, and B. Pandey, "Techno-economic design of a combined heat and power microgrid for a remote community in Newfoundland Canada", IEEE Access, vol. 9, pp. 91548-91563, 2021. DOI: 10.1109/ACCESS.2021.3091738.
- M. R. Akhtari, I. Shayegh, and N. Karimi, "Techno-economic assessment and optimization of a hybrid renewable earth - Air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations", Renew. Energy, vol. 148, pp. 839-851, 2020. DOI: 10.1016/j.renene.2019.10.169.
- D. Z. Djurdjevic, "Perspectives and assessments of solar PV power engineering in the Republic of Serbia", Renew. Sustain. Energy Rev., vol. 15, no. 5, pp. 2431-2446, 2011. DOI: 10.1016/j.rser.2011.02.025.
- T. Pavlović, D. Milosavljević, I. Radonjić, L. Pantić, A. Radivojević, and M. Pavlović, "Possibility of electricity generation using PV solar plants in Serbia", Renew. Sustain. Energy Rev., vol. 20, pp. 201-218, 2013. DOI: 10.1016/j.rser.2012.11.070.
- M. Panić, M. Urošev, A. Milanović Pešić, J. Brankov, and Ž. Bjeljac, "Small hydropower plants in Serbia: Hydropower potential, current state and perspectives", Renew. Sustain. Energy Rev., vol. 23, pp. 341-349, 2013. DOI: 10.1016/j.rser.2013.03.016.
- "Surface Meteorology and Solar Energy", NASA/SSE. [Online]. Available: https://asdc.larc.nasa.gov/project/SSE
- HOMER Pro Version 3.16.2 User Manual. HOMER Energy: Boulder, CO, USA, 2023.
- T. Lambert, P. Gilman, and P. Lilienthal, "Micropower system modeling with HOMER", in Integration of Alternative Sources of Energy. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006, pp. 379- 418. DOI: 10.1002/0471755621.ch15.
- D. Novković, N. Maričić, M. Jevtić, and Z. Glavčić, "Improving small bulb turbine performances using CFD", Energ. Ekon. Ekol., nos. 3-4, pp. 309-316, 2013.
- Green Resource Center (in Serbian). [Online]. Available: https://thebalkanforum.org/file/repository/NK60
- Solar panels SHARP, ABiSolar. [Online]. Available: https://abisolar.rs/proizvod/solarni-paneli-sharp/50/
- Exchange Rate, Kursna Lista. [Online]. Available: https://www.kursna-lista.info/valuta/usd-americki-dolar
- Halooglasi. [Online]. Available: https://www.halooglasi.com/masine-alati-oprema/elektromotori-i-agregati/agregat-besumni-dizel-yamaha- 12kw/5425637009922?kid=1
- Retail Serbia. [Online]. Available: https://retailserbia.com/info/cene-goriva-srbija
- National Bank of Serbia. [Online]. Available: https://www.nbs.rs/sr_RS/finansijsko_trziste/medjubankarsko-devizno-trziste/kursna-lista/zvanicni-srednji-kurs-dinara/index.html
- Trojan 27TMX 12V 105Ah, Andreja doo Temerin. [Online]. Available: https://www.akumulator-shop.rs/akumulatori-za-brodove/trojan-27tmx-12v-105ah
- Inverters Occren NB 1000W pure sine, ABiSolar. [Online]. Available: https://abisolar.rs/proizvod/invertori-occren-nb-1000w-cist-sinus/110/
Issue
| Elektronika ir Elektrotechnika, vol. 30, pp. 44-55, 2024, , https://doi.org/10.5755/j02.eie.36123 |
|