Autors: Kiryakova V., Paneva-Konovska, J. D.
Title: Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey
Keywords: eigenfunctions, extensions of H-functions, fractional calculus, Le Roy function, Mittag-Leffler function, special functions

Abstract: In the survey Kiryakova: “A Guide to Special Functions in Fractional Calculus” (published in this same journal in 2021) we proposed an overview of this huge class of special functions, including the Fox H-functions, the Fox–Wright generalized hypergeometric functions (Formula presented.) and a large number of their representatives. Among these, the Mittag-Leffler-type functions are the most popular and frequently used in fractional calculus. Naturally, these also include all “Classical Special Functions” of the class of the Meijer’s G- and (Formula presented.) -functions, orthogonal polynomials and many elementary functions. However, it so happened that almost simultaneously with the appearance of the Mittag-Leffler function, another “fractionalized” variant of the exponential function was introduced by Le Roy, and in recent years, several authors have extended this special function and mentioned its applications. Then, we introduced a general class of so-called (multi-index) Le Roy-type functions, and observed that they fall in an “Extended Class of SF of FC”. This includes the I-functions of Rathie and, in particular, the (Formula presented.) -functions of Inayat-Hussain, studied also by Buschman and Srivastava and by other authors. These functions initially arose in the theory of the Feynman integrals in statistical physics, but also include some important special functions that are well known in math, like the polylogarithms, Riemann Zeta functions, some famous polynomials and number sequences, etc. The I- and (Formula presented.) -functions are introduced by Mellin–Barnes-type integral representations involving multi-valued fractional order powers of (Formula presented.) -functions with a lot of singularities that are branch points. Here, we present briefly some preliminaries on the theory of these functions, and then our ideas and results as to how the considered Le Roy-type functions can be presented in their terms. Next, we also introduce Gelfond–Leontiev generalized operators of differentiation and integration for which the Le Roy-type functions are eigenfunctions. As shown, these “generalized integrations” can be extended as kinds of generalized operators of fractional integration, and are also compositions of “Le Roy type” Erdélyi–Kober integrals. A close analogy appears with the Generalized Fractional Calculus with H- and G-kernel functions, thus leading the way to its further development. Since the theory of the I- and (Formula presented.) -functions still needs clarification of some details, we consider this work as a “Discussion Survey” and also provide a list of open problems.

References

  1. Erdélyi A. Magnus W. Oberhettinger F.T. Higher Transcendental Functions McGraw Hill New York, NY, USA 1953–1955 1–3
  2. Gorenflo R. Kilbas A. Mainardi F. Rogosin S. Mittag-Leffler Functions, Related Topics and Applications 2nd ed. Springer Berlin/Heidelberg, Germany 2020 10.1007/978-3-662-61550-8
  3. Kilbas A.A. Saigo M. H-Transforms: Theory and Applications Series on Analytic Methods and Special Functions, 9 CRC Press Boca Raton, FL, USA 2004
  4. Kilbas A.A. Srivastava H.M. Trujillo J.J. Theory and Applications of Fractional Differential Equations Elsevier Amsterdam, The Netherlands 2006
  5. Marichev O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables Ellis Horwood Chichester, UK 1983 Transl. from Russian Ed., Method of Evaluation of Integrals of Special Functions; Nauka i Teknika: Minsk, Russia, 1978. (In Russian)
  6. Mathai A.M. Saxena R.K. Haubold H.J. The H-Function. Theory and Applications Springer Berlin/Heidelberg, Germany 2010
  7. Prudnikov A.P. Brychkov Y. Marichev O.I. Integrals and Series, Vol. 3: More Special Functions Gordon and Breach Science Publishers New York, NY, USA London, UK Paris, France Tokyo, Japan 1992
  8. Srivastava H.M. Gupta K.S. Goyal S.P. The H-Functions of One and Two Variables with Applications South Asian Publications New Delhi, India 1982
  9. Kiryakova V. A guide to special functions in fractional calculus Mathematics 2021 9 106 10.3390/math9010106
  10. Rathie A. A new generalization of the generalized hypergeometric functions Le Matematiche 1997 LII 297 310
  11. Inayat-Hussain A.A. New properties of hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function J. Phys. A Math. Gen. 1987 20 4119 4128
  12. Buschman R.G. Srivastava H.M. The H¯ functions associated with a certain class of Feynman integrals J. Phys. A Math. Gen. 1990 23 4707 4710 10.1088/0305-4470/23/20/030
  13. Kiryakova V. Paneva-Konovska J. Multi-index Le Roy functions of Mittag-Leffler-Prabhakar type Int. J. Appl. Math. 2022 35 743 766 10.12732/ijam.v35i5.8
  14. Kiryakova V. Paneva-Konovska J. Rogosin S. Dubatovskaya M. Erdélyi-Kober fractional integrals (Part 2) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type Int. J. Appl. Math. 2023 36 605 623 10.12732/ijam.v36i5.2
  15. Paneva-Konovska J. Prabhakar functions of Le Roy type: Inequalities and asymptotic formulae Mathematics 2023 11 3768 10.3390/math11173768
  16. Paneva-Konovska J. Kiryakova V. Rogosin S. Dubatovskaya M. Laplace transform (Part 1) of the multi-index Mittag-Leffler-Prabhakar functions of Le Roy type Int. J. Appl. Math. 2023 36 455 474 10.12732/ijam.v36i4.2
  17. Pincherle S. Sulle funzioni ipergeometriche generalizzate Atti R. Accad. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1888 4 694–700, 792–799 (Reprinted in Salvatore Pincherle: Opere Scelte, UMI (Unione Matematica Italiana) Cremonese: Roma, Italy, 1954; Volume 1,pp. 223–239)
  18. Mainardi F. Pagnini G. Salvatore Pincherle: The pioneer of the Mellin-Barnes integrals J. Comput. Appl. Math. 2003 153 331 341 10.1016/S0377-0427(02)00609-X
  19. Fox C. The G and H-functions as symmetric Fourier kernels Trans. Am. Math. Soc. 1961 98 395 429
  20. Kiryakova V. Generalized Fractional Calculus and Applications Longman Harlow, UK J. Wiley New York, NY, USA 1994
  21. Karp D. Chapter 12—A note on Fox’s H-function in the light of Braaksma’s results Special Functions and Analysis of Differential Equations Agarwal P. Agarwal R.P. Ruzhansky M. Chapman and Hall/CRC New York, NY, USA 2020 12p Available online: http://arxiv.org/abs/1904.10651v1 (accessed on 16 December 2023)
  22. Braaksma B.L.J. Asymptotic expansions and analytic continuation for a class of Barnes integrals Compos. Math. 1962–1964 15 239 341
  23. Meijer C.S. On the G-function Indag. Math. 1946 8 124–134, 213–225, 312–324, 391–400, 468–475, 595–602, 661–670, 713–723.
  24. Wright E.M. On the coefficients of power series having exponential singularities J. Lond. Math. Soc. 1933 8 71 79 10.1112/jlms/s1-8.1.71
  25. Wright E.M. The generalized Bessel function of order greater than one Quart. J. Math. Oxf. Ser. 1940 11 36 48 10.1093/qmath/os-11.1.36
  26. Fox C. The asymptotic expansion of generalized hypergeometric functons Proc. Lond. Math. Soc. Ser. 2 1928 27 389 400 10.1112/plms/s2-27.1.389
  27. Gorenflo R. Luchko Y. Mainardi F. Analytical properties and applications of the Wright function Fract. Calc. Appl. Anal. 1999 2 383 414
  28. Mittag-Leffler G.M. Sur la nouvelle fonction Eα(x) C. R. de l’Acad. Sci. 1903 137 554 558
  29. Dzrbashjan M.M. On the integral transformations generated by the generalized Mittag-Leffler function Izv. Arm. SSR 1960 13 21 63 (In Russian)
  30. Haubold H.J. Mathai A.M. Saxena R.K. Mittag-Leffler functions and their applications J. Appl. Math. 2011 2011 298628 10.1155/2011/298628
  31. Rogosin S. The role of the Mittag-Leffler function in fractional modeling Mathematics 2015 3 368 381 10.3390/math3020368
  32. Prabhakar T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel Yokohama Math. J. 1971 19 7 15
  33. Garra R. Garrappa R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application Commun. Nonlinear Sci. Numer. Simul. 2018 56 314 319 10.1016/j.cnsns.2017.08.018
  34. Giusti A. Colombaro I. Garra R. Garrappa R. Polito F. Popolizio M. Mainardi F. A practical guide to Prabhakar fractional calculus Fract. Calc. Appl. Anal. 2020 23 88 111 10.1515/fca-2020-0002
  35. Luchko Y.F. Srivastava H.M. The exact solution of certain differential equations of fractional order by using operational calculus Comput. Math. Appl. 1995 29 73 85 10.1016/0898-1221(95)00031-S
  36. Yakubovich S. Luchko Y. The Hypergeometric Approach to Integral Transforms and Convolutions Series Mathematics and Its Applications 287 Kluwer Academic Publishers Dordrecht, The Netherlands Boston, MA, USA London, UK 1994
  37. Kiryakova V. Multiple Dzrbashjan-Gelfond-Leontiev fractional differintegrals. In Recent Advances in Applied Mathematics’96 (Proceedings of International Workshop, Kuwait University), 1996; pp. 281–294 Available online: https://www.researchgate.net/publication/307122608_Multiple_Dzrbashjan-Gelfond-Leontiev_Fractional_Differintegrals_1 (accessed on 16 December 2023)
  38. Kiryakova V. Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms Fract. Calc. Appl. Anal. 1999 2 445 462
  39. Kiryakova V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus J. Comput. Appl. Math. 2000 118 241 259 10.1016/S0377-0427(00)00292-2
  40. Kiryakova V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus Comput. Math. Appl. 2010 59 1885 1895 10.1016/j.camwa.2009.08.025
  41. Kilbas A.A. Koroleva A.A. Rogosin S.V. Multi-parametric Mittag-Leffler functions and their extension Fract. Calc. Appl. Anal. 2013 16 378 404 10.2478/s13540-013-0024-9
  42. Paneva-Konovska J. Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus C. R. Acad. Bulg. Sci. 2011 64 1089 1098
  43. Paneva-Konovska J. From Bessel to Multi-Index Mittag-Leffler Functions: Enumerable Families, Series in Them and Convergence World Scientific Publishing London, UK 2016
  44. Paneva-Konovska J. Kiryakova V. On the multi-index Mittag-Leffler functions and their Mellin transforms Int. J. Appl. Math. 2020 33 549 571 10.12732/ijam.v33i4.1
  45. Rogosin S. Dubatovskaya M. Multi-parametric Le Roy function revisited Fract. Calc. Appl. Anal. 2023 Published Online First 10.1007/s13540-023-00221-9
  46. Slater L.J. Generalized Hypergeomtric Functions Cambridge University Press London, UK New York, NY, USA 1966
  47. Saxena R.K. Functional relations involving generalized H-function Le Matematiche 1998 LIII 123 131
  48. Le Roy É. Sur les séries divergentes et les fonctions définies par un développement de Taylor Ann. De La Fac. Des Sci. De Touluse 2e Sér. 1900 2 385 430 (In French)
  49. Le Roy É. Valéurs asymptotiques de certaines séries procédant suivant les puissances entères et positives d’une variable réelle Bulletin des Sci. Mathématiques, 2eme sér. 1900 24 245 268 (In French)
  50. Mainardi F. Why the Mittag-Leffler function can be considered the Queen function of the fractional calculus? Entropy 2020 22 1359 10.3390/e22121359
  51. Kolokoltsov V. The law of large numbers for quantum stochastic filtering and control of many particle systems Theor. Math. Phys. 2021 208 937 957 10.1134/S0040577921070084
  52. Gerhold S. Asymptotics for a variant of the Mittag-Leffler function Integral Transform. Spec. Funct. 2012 23 397 403 10.1080/10652469.2011.596151
  53. Garra R. Polito F. On some operators involving Hadamard derivatives Integral Transform. Spec. Funct. 2013 24 773 782 10.1080/10652469.2012.756875
  54. Garrappa R. Rogosin S. Mainardi F. On a generalized three-parameter Wright function of le Roy type Fract. Calc. Appl. Anal. 2017 206 1196 1215 10.1515/fca-2017-0063
  55. Garra R. Orsingher E. Polito F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability Mathematics 2018 6 4 10.3390/math6010004
  56. Gorska K. Horzela A. Garrappa R. Some results on the complete monotonicity of Mittag-Leffler functions of Le Roy type Fract. Calc. Appl. Anal. 2010 22 1284 1306 10.1515/fca-2019-0068
  57. Simon T. Remark on a Mittag-Leffler function of Le Roy type Integral Transform. Spec. Funct. 2022 33 108 114 10.1080/10652469.2021.1913138
  58. Mehrez K. Das S. On some geometric properties of the Le Roy-type Mittag-Leffler functions Hacet. J. Math. Stat. 2022 51 1085 1103 10.15672/hujms.989236
  59. Mehrez K. Study of the analytic function related to the Le-Roy-type Mittag-Leffler function Ukr. Math. J. 2023 75 719 743 10.1007/s11253-023-02225-3
  60. Luchko Y. Operational method in fractonal calculus Fract. Calc. Appl. Anal. 1999 2 463 488
  61. Rogosin S. Dubatovskaya M. Multi-parametric Le Roy function Fract. Calc. Appl. Anal. 2023 26 54 69 10.1007/s13540-022-00119-y
  62. Tomovski Ž. Mehrez K. Some families of generalized Mathieu–type power series, associated probability distributions and related inequalities involving complete monotonicity and log–convexity Math. Inequal. Appl. 2017 20 973 986 10.7153/mia-2017-20-61
  63. Gelfond A.O. Leontiev A.F. On a generalization of the Fourier series Mat. Sbornik 1951 29 477 500 (In Russian)
  64. Kiryakova V. Gel’fond-Leont’ev integration operators of fractional (multi-)order generated by some special functions AIP Conf. Proc. 2018 2048 050016 10.1063/1.5082115
  65. Samko S. Kilbas A. Marichev O. Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Yverdon, Switzerland 1993
  66. Podlubny I. Fractional Differential Equations Academic Press Boston, MA, USA 1999
  67. Machado J.A.T. Kiryakova V. Recent history of the fractional calculus: Data and statistics Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory Kochubei A. Luchko Y. De Gryuter Berlin, Germany 2019 Chapter 1 1 21 10.1515/9783110571622-001
  68. Sneddon I.N. The use in mathematical analysis of Erdélyi-Kober operators and some of their applications Fractional Calculus and Its Applications, Proceedings of the International Conference, New Haven, CT, USA, June 1974 Ross B. Lecture Notes in Mathematics Springer New York, NY, USA 1975 Volume 457 37 79
  69. Kiryakova V. Unified approach to fractional calculus images of special functions—A survey Mathematics 2020 8 2260 10.3390/math8122260
  70. Srivastava H.M. Lyn S.-D. Wang P.-Y. Some fractional-calculus results for the H¯-function associated with a class of Feynman integrals Russ. J. Math. Phys. 2006 13 94 100
  71. Kalla S.L. Operators of Fractional Integration Lecture Notes in Mathematics Springer Berlin/Heidelberg, Germany 1980 Volume 798 258 280
  72. Kiryakova V. A brief story about the operators of the generalized fractional calculus Fract. Calc. Appl. Anal. 2008 11 203 220
  73. Kiryakova V. Generalized fractional calculus operators with special functions Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory Kochubei A. Luchko Y. De Gryuter Berlin, Germany 2019 Chapter 4 87 110 10.1515/9783110571622-004
  74. Kiryakova V. Luchko Y. Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators Cent. Eur. J. Phys. 2013 11 1314 1336 10.2478/s11534-013-0217-1
  75. Dzrbashjan M.M. Integral Transforms and Representations in the Complex Domain Nauka Moscow, Russia 1966 (In Russian)
  76. Karp D. López J.L. On a particular class of Meijer’s G functions appearing in fractional calculus Int. J. Appl. Math. 2018 31 521 543 10.12732/ijam.v31i5.1
  77. Karp D. Prilepkina E. Completely monotonic gamma ratio and infinitely divisible H-function of Fox Comput. Methods Funct. Theory 2016 16 135 153 10.1007/s40315-015-0128-9
  78. Vellaisamy P. Kataria K.K. The I-function distribution and its extensions Teoria Veroyatnostej i ee Primenenia (Russ. Ed.) 2018 63 284 305 10.4213/tvp5184 (In Russian)
  79. Pogány T. Integral form of Le Roy-type hypergeometric function Integral Transform. Spec. Funct. 2018 29 580 584 10.1080/10652469.2018.1472592
  80. Kiryakova V. Fractional calculus operators of special functions?—The result is well predictable! Chaos Solitons Fractals 2017 102 2 15 10.1016/j.chaos.2017.03.006
  81. Krätzel E. Differentiationssätze der L-Transformation under Differentiagleichungen nach dem Operator Math. Machrichten 1967 35 105 114 10.1002/mana.19670350107
  82. Krätzel E. Integral transformations of Bessel type Generalized Functions and Operational Calculus (Proc. Conf. Varna 1975) Bulgarian Academy of Sciences Sofia, Bulgaria 1979 148 155
  83. Kilbas A.A. Saxena R.K. Trujillo J.J. Krätzel function as a function of hypergeometric type Fract. Calc. Appl. Anal. 2006 9 109 131
  84. Dimovski I. Kiryakova V. The Obrechkoff integral transform: Properties and relation to a generalized fractional calculus Numer. Funct. Anal. Optimiz. 2000 21 121 144 10.1080/01630560008816944
  85. Kiryakova V. From the hyper-Bessel operators of Dimovski to the generalized fractional calculus Fract. Calc. Appl. Anal. 2014 17 977 1000 10.2478/s13540-014-0210-4
  86. Dimovski I. Operational calculus for a class of differental operators C. R. Acad. Bulg. Sci. 1966 19 1111 1114
  87. Mainardi F. A tutorial on the basic special functions of fractional calculus WSEAS Trans. Math. 2020 19 74 98 10.37394/23206.2020.19.8
  88. Delerue P. Sur le calcul symboloque à n variables et fonctions hyperbesseliennes (II) Ann. Soc. Sci. Brux. Ser. 1 1953 3 229 274
  89. Gorenflo R. Kilbas A.A. Rogosin S. On the generalized Mittag-Leffler type function Integral Transform. Spec. Funct. 1998 7 215 224 10.1080/10652469808819200
  90. Droghei R. Properties of the multi-index special function Wα¯,ν¯(z) Fract. Calc. Appl. Anal. 2023 26 2057 2068 10.1007/s13540-023-00197-6
  91. Kiryakova V. Fractional calculus of some “new” but not new special functions: k-, multi-index-, and S-analogues AIP Conf. Proc. 2019 2172 050008 10.1063/1.5133527
  92. Bazhlekova E. Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives Fract. Calc. Appl. Anal. 2021 24 88 111 10.1515/fca-2021-0005
  93. Gupta K.C. Soni R.C. New properties of the hypergeometric series associated with Feynman integrals Kyungpook Math. J. 2001 41 97 104
  94. Jolly N. New Investigations in Integral Transforms and Fractional Integral Operators Involving Generalized Extended Mittag-Leffer Function and Extended Hurwitz Lerch Zeta Function with Applications to the Solution of Fractional Differential Equations Ph.D. Thesis Malaviya National Institute of Technology Jaipur, India 2019
  95. Srivastava H.M. An introductory overwiew of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions J. Adv. Eng. Comput. 2021 5 135 166 10.55579/jaec.202153.340
  96. Gerhold S. Tomovski Ž. Asymptotic expansion of Mathieu power series and trigonometric Mathieu series J. Math. Anal. Appl. 2019 479 1882 1892 10.1016/j.jmaa.2019.07.029
  97. Stivastava H.M. Saxena R.K. Pogány T. Saxena R. Integral and computational representations of the extended Hurwiz-Lerch zeta function Integral Transform. Spec. Funct. 2011 22 487 506 10.1080/10652469.2010.530128
  98. Bhatter S. Faisal S.M. Qureshi M.I. A family of Mittag-Leffelr type functions and their properties Palest. J. Math. 2015 4 367 373
  99. Schilling R.L. Song R. Vondraček Z. Bernstein Functions: Theory and Applications 2nd ed. De Gruyter Berlin, Germany Boston, MA, USA 2012
  100. Berg C. Çetinkaya A. Karp D. Completely monotonic ratios of basic and ordinary gamma functions Aequat. Math. 2021 95 569 588 10.1007/s00010-020-00767-6
  101. Gerhold S. On some non-holonomic equences Electr. J. Comb. 2004 11 R87 10.37236/1840
  102. Bell J.P. Gerhold S. Klazar M. Luca F. Non-holonomicity of sequences defined via elementary functions arXiv 2006 math/060514v1 10.1007/s00026-008-0333-6
  103. Flajolet P. Gerhold S. Salvy B. Lindelöf representations and (non)-holonomic sequences arXiv 2009 0906.1957v2

Issue

Mathematics, vol. 12, 2024, , https://doi.org/10.3390/math12020319

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science