Autors: Pandiev, I. M., Tomchev, N. N., Kurtev, N. A., Aleksandrova, M. P.
Title: Analysis of the Methods for Realization of Low-Power Piezoelectric Energy Harvesting Circuits for Wearable Battery-Free Power Supply Devices
Keywords: buck regulator, DC-DC converter, energy harvesting, MEMS, parallel-plate capacitor, piezoelectric element, power management circuit, rectifier, SSHI, supercapacitor, voltage multiplier

Abstract: This paper presents a comprehensive review of the design and implementation methods of low-power piezoelectric energy harvesting circuits, which in the last few years have gained an extremely large range of applications like the power sources of wearable electronic devices, such as biometrical sensors. Before examining the electronic circuitries of the self-supplied power devices, an overview of the structure, equivalent electrical circuits, and basic parameters of the piezoelectric generators and MEMSs as energy harvesting elements is presented. The structure of energy storage elements (parallel-plate capacitors and thin-film supercapacitors), suitable for this type of application, is also presented. The description of these components from an electrical point of view allows them to be easily workable when connected to the various power conversion electronic circuits. Based on an overview of the structure and the principles of operation, as well as some analytical expressions for energy efficiency evaluation, a comprehensive comparative analysis is presented. Depending on the advantages and disadvantages of the known circuit configurations, the basic electrical and design parameters are systematized in tabular form. Practical realizations of piezoelectric power conversion circuits are also presented in graphic form, ensuring the optimal value of energy efficiency and compactness in the construction of the devices.

References

  1. Todaro M.T. Guido F. Algieri L. Mastronardi V.M. Desmaële D. Epifani G. De Vittorio M. Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films IEEE Trans. Nanotechnol. 2018 17 220 230 10.1109/TNANO.2017.2789300
  2. Amin N. Islam S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare Energies 2022 15 7495 10.3390/en15207495
  3. Fu H. Jiang J. Hu S. Rao J. Theodossiades S. A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing Mech. Syst. Signal Process. 2023 189 110034 10.1016/j.ymssp.2022.110034
  4. Elfrink R. Matova S. de Nooijer C. Jambunathan M. Goedbloed M. van de Molengraft J. Pop V. Vullers R.J.M. Renaud M. van Schaijk R. Shock induced energy harvesting with a MEMS harvester for automotive applications Proceedings of the 2011 International Electron Devices Meeting Washington, DC, USA 5–7 December 2011 29.5.1 29.5.4 10.1109/IEDM.2011.6131639
  5. Shimanouchi T. Toyoda O. Nakazawa F. A wireless motor-condition, precise analysis system using a highly efficient vibration-energy harvester Proceedings of the 11th IEEE International Conference on Industrial Informatics (INDIN) Bochum, Germany 29–31 July 2013 10.1109/INDIN.2013.6622918
  6. Rosa R.L. Costanza M. Livreri P. Advanced Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE) Turin, Italy 18–20 November 2020 10.23919/AEITAUTOMOTIVE50086.2020.9307406
  7. Romani A. Filippi M. Tartagni M. Micropower Design of a Fully Autonomous Energy Harvesting Circuit for Arrays of Piezoelectric Transducers IEEE Trans. Power Electron. 2014 29 729 739 10.1109/TPEL.2013.2257856
  8. Aktakka E.E. Najafi K. A Micro Inertial Energy Harvesting Platform with Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes IEEE J. Solid-State Circuits 2014 49 2017 2029 10.1109/JSSC.2014.2331953
  9. Liu W. Wang Z. Qu S. Luo R. Vibration energy harvesting and management for wireless sensor networks in bridge structural monitoring Proceedings of the 2015 IEEE SENSORS Busan, Republic of Korea 1–4 November 2015 10.1109/ICSENS.2015.7370561
  10. Han Y. Feng Y. Yu Z. Lou W. Liu H. A Study on Piezoelectric Energy-Harvesting Wireless Sensor Networks Deployed in a Weak Vibration Environment IEEE Sens. J. 2017 17 6770 6777 10.1109/JSEN.2017.2747122
  11. Huet F. Boitier V. Seguier L. Tunable Piezoelectric Vibration Energy Harvester with Supercapacitors for WSN in an Industrial Environment IEEE Sens. J. 2022 22 15373 15384 10.1109/JSEN.2022.3185426
  12. Caliò R. Rongala U.B. Camboni D. Milazzo M. Stefanini C. De Petris G. Oddo C.M. Piezoelectric Energy Harvesting Solutions Sensors 2014 14 4755 4790 10.3390/s140304755 24618725
  13. Li H. Tian C. Deng D. Energy harvesting from low frequency applications using piezoelectric materials Appl. Phys. Rev. 2014 1 041301 10.1063/1.4900845
  14. Priya S. Song H.-C. Zhou Y. Varghese R. Chopra A. Kim S.-G. Kanno I. Wu L. Ha D.S. Ryu J. et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits Energy Harvest. Syst. Actuators 2017 4 3 39 10.1515/ehs-2016-0028
  15. Covaci C. Gontean A. Piezoelectric Energy Harvesting Solutions: A Review Sensors 2020 20 3512 10.3390/s20123512 32575888
  16. Tamburrano P. Sciatti F. Plummer A.R. Distaso E. De Palma P. Amirante R. A Review of Novel Architectures of Servovalves Driven by Piezoelectric Actuators Energies 2021 14 4858 10.3390/en14164858
  17. Brusa E. Carrera A. Delprete C. A Review of Piezoelectric Energy Harvesting: Materials, Design, and Readout Circuits Actuators 2023 12 457 10.3390/act12120457
  18. Mishra P. Singh G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review Energies 2023 16 6903 10.3390/en16196903
  19. Hezekiah J.D.K. Ramya K.C. Radhakrishnan S.B.K. Kumarasamy V.M. Devendran M. Ramalingam A. Maheswar R. Review of Next-Generation Wireless Devices with Self-Energy Harvesting for Sustainability Improvement Energies 2023 16 5174 10.3390/en16135174
  20. Dziadak B. Makowski Ł. Kucharek M. Jóśko A. Energy Harvesting for Wearable Sensors and Body Area Network Nodes Energies 2023 16 1681 10.3390/en16041681
  21. Katche M.L. Makokha A.B. Zachary S.O. Adaramola M.S. A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems Energies 2023 16 2206 10.3390/en16052206
  22. Nwalike E.D. Ibrahim K.A. Crawley F. Qin Q. Luk P. Luo Z. Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies Energies 2023 16 5711 10.3390/en16155711
  23. Haider S.T. Shah M.A. Lee D.-G. Hur S. A Review of the Recent Applications of Aluminum Nitride-Based Piezoelectric Devices IEEE Access 2023 11 58779 58795 10.1109/ACCESS.2023.3276716
  24. Ottman G.K. Hofmann H.F. Bhatt A.C. Lesieutre G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply IEEE Trans. Power Electron. 2002 17 669 676 10.1109/TPEL.2002.802194
  25. Tabesh A. Fréchette L. An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters J. Micromechanics Microengineering 2008 18 104009 10.1088/0960-1317/18/10/104009
  26. Sezer N. Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting Nano Energy 2021 80 105567 10.1016/j.nanoen.2020.105567
  27. Wei C. Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization Renew. Sustain. Energy Rev. 2017 74 1 18 10.1016/j.rser.2017.01.073
  28. Liang J. Liao W.-H. Impedance matching for improving piezoelectric energy harvesting systems Proceedings of the SPIE—The International Society for Optical Engineering San Diego, CA, USA 6–10 March 2010 10.1117/12.847524
  29. ABT-441-RC; Piezo Element, 27 mm, 4200 Hz, Leaded—Datasheet. MULTICOMP PRO: Chicago, IL, USA 2020 Available online: https://uk.farnell.com/multicomp/abt-441-rc/transducer-piezo-4200hz-30v/dp/1675548 (accessed on 11 September 2023)
  30. ABT-448-90-RC; Piezo Element, 35 mm, 2900 Hz, Leaded—Datasheet. MULTICOMP PRO: Chicago, IL, USA 2019 Available online: https://uk.farnell.com/multicomp/abt-448-90-rc/piezo-element-35mm-2-900hz-leaded/dp/1675549?ost=abt-448-90-rc (accessed on 11 September 2023)
  31. PPA PRODUCTS Datasheet & User Manual; Midé Technology: Medford, MA, USA 2020 Available online: https://cdn2.hubspot.net/hubfs/3841176/Data-Sheets/ppa-piezo-product-datasheet.pdf (accessed on 27 May 2024)
  32. Wakshume D.G. Płaczek M.Ł. Optimizing Piezoelectric Energy Harvesting from Mechanical Vibration for Electrical Efficiency: A Comprehensive Review Electronics 2024 13 987 10.3390/electronics13050987
  33. He M. He M. Zhang X. Xia L. Topology Optimization of Piezoelectric Energy Harvesters for Enhanced Open-Circuit Voltage Subjected to Harmonic Excitations Materials 2022 15 4423 10.3390/ma15134423
  34. Safaei M. Sodanoand H.A. Anton S.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018) Smart Mater. Struct. 2019 28 113001 10.1088/1361-665X/ab36e4
  35. Ichige R. Kuriyama N. Umino Y. Tsukamoto T. Suzuki T. Size optimization of metamaterial structure for elastic layer of a piezoelectric vibration energy harvester Sens. Actuators A Phys 2021 318 112488 10.1016/j.sna.2020.112488
  36. Elvira-Hernández E.A. Woo-García R.M. López-Huerta F. Vázquez-Leal H. Herrera-May A.L. Design of a MEMS-Based Piezoelectric Vibration Energy Harvesting Device for Automotive Applications Comput. Sist. 2019 23 71 79 10.13053/cys-23-1-3143
  37. Stamatellou A.M. PZT and PVDF piezoelectric transducers’ design implications on their efficiency and energy harvesting potential Energy Harvest. Syst. 2023 10 157 167 10.1515/ehs-2022-0087
  38. Feng H. Bu L. Li Z. Xu S. Hu B. Xu M. Jiang S. Wang X. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response Microsyst. Nanoeng. 2023 9 33 10.1038/s41378-023-00500-8
  39. Zhang L. Gui J. Wu Z. Li R. Wang Y. Gong Z. Zhao X. Sun C. Guo S. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes Nano Energy 2019 65 103924 10.1016/j.nanoen.2019.103924
  40. Huang M. Hou C. Li Y. Liu H. Wang F. Chen T. Yang Z. Tang G. Sun L. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism Micromachines 2019 10 639 10.3390/mi10100639 31554221
  41. Hossain M.I. Zahid M.S. Chowdhury M.A. Hossain MM M. Hossain N. MEMS-based energy harvesting devices for low-power applications—A review Results Eng. 2023 19 101264 10.1016/j.rineng.2023.101264
  42. Zhang M. Zhang A.M. Chen Y. Xie J. Xin Z.F. Chen Y.J. Kan Y.H. Li S.L. Lan Y.Q. Zhang Q. Polyoxovanadate-polymer hybrid electrolyte in solid state batteries Energy Storage Mater. 2020 29 172 181 10.1016/j.ensm.2020.04.017
  43. Dutta S. Pandey A. Overview of residual stress in MEMS structures: Its origin, measurement, and control J. Mater. Sci. Mater. Electron. 2021 32 6705 6741 10.1007/s10854-021-05405-8
  44. Aleksandrova M. Polymeric seed layer as a simple approach for nanostructuring of Ga-doped ZnO films for flexible piezoelectric energy harvesting Microelectron. Eng. 2020 233 111434 10.1016/j.mee.2020.111434
  45. Stefanov N. Special rectifiers, and Power rectifiers Power Supply Devices Tehnika Sofia, Bulgaria 2002 Chapters 2 and 4 43–68, 84–96 9789540305646 (In Bulgarian)
  46. Tietze V. Schenk C. Power Supplies In Electronic circuits 2nd ed. Springer New York, NY, USA 2008 Chapter 16 885 928 10.1007/978-3-540-78655-9
  47. Gates Energy Products, Typical Application for Sealed Nickel-cadmium Batteries Rechargeable Batteries Application Handbook Butterworth-Heinemann Boston, MA, USA London, UK 1992 35 152
  48. Aleksandrova M. Pandiev I. Application of Thin Film Ultralow-Power Lead-Free Perovskite Solar Energy Harvesters in Power Management Systems Proceedings of the 28 International Conference Mixed Design of Integrated Circuits and Systems, MIXDES 2021 Łódź, Poland 24–26 June 2021 10.23919/MIXDES52406.2021.9497505
  49. Asthana P. Khanna G. Power amplification interface circuit for broadband piezoelectric energy harvester Microelectron. J. 2020 98 104734 10.1016/j.mejo.2020.104734
  50. Dicken J. Mitcheson P.D. Stoianov I. Yeatman E.M. Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications IEEE Trans. Power Electron. 2012 27 4514 4529 10.1109/TPEL.2012.2192291
  51. Szarka G.D. Stark B.H. Burrow S.G. Review of Power Conditioning for Kinetic Energy Harvesting Systems IEEE Trans. Power Electron. 2012 27 803 815 10.1109/TPEL.2011.2161675
  52. Faghihi S. Moallem M. Analysis and design of a low power electronics circuit for energy harvesting applications Proceedings of the 2012 IEEE International Symposium on Industrial Electronics Hangzhou, China 28–31 May 2012 10.1109/ISIE.2012.6237081
  53. Du S. Seshia A.A. An Inductorless Bias-Flip Rectifier for Piezoelectric Energy Harvesting IEEE J. Solid-State Circuits 2017 52 2746 2757 10.1109/JSSC.2017.2725959
  54. Richard C. Guyomar D. Audigier D. Ching G. Semi Passive Damping using Continuous Switching of a Piezoelectric Device Proceedings of the SPIE Smart Structures and Materials Conference, Passive Damping and Isolation San Diego, CA, USA 1–2 March 1999
  55. Guyomar D. Richard C. Lefeuvre E. Petit L. Piezoelectric Non-linear Systems for Standalone Vibration Control and Energy Reclamation Proceedings of the AC’04 Hildesheim, Germany 27–28 April 2004
  56. Badel A. Guyomar D. Lefeuvre E. Richard C. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion J. Intell. Mater. Syst. Struct. 2005 16 889 901 10.1177/1045389X05053150
  57. Dicken J. Mitcheson P.D. Stoianov I. Yeatman E.M. Increased power output from piezoelectric energy harvesters by pre-biasing Proceedings of the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS) Washington, DC, USA 1–4 December 2009 75 78
  58. Oh T. Islam S.K. To G. Mahfouz M. Powering wearable sensors with a low-power CMOS piezoelectric energy harvesting circuit Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Rochester, MN, USA 7–10 May 2017 10.1109/MeMeA.2017.7985894
  59. Chew Z.J. Zhu M. Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting IEEE Trans. Ind. Electron. 2020 67 3267 3276 10.1109/TIE.2019.2908610
  60. Tabesh A. Frechette L.G. A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy From a Piezoelectric Micropower Generator IEEE Trans. Ind. Electron. 2010 57 840 849 10.1109/TIE.2009.2037648
  61. Pandiev I. Aleksandrova M. Kolev G. Design and Implementation of Interface Circuits Intended for Printed Piezoelectric Micropower Harvesters on Flexible Substrates IOP Conf. Ser. Mater. Sci. Eng. 2020 876 012007 10.1088/1757-899X/876/1/012007
  62. Brenes A. Morel A. Juillard J. Lefeuvre E. Badel A. Maximum power point of piezoelectric energy harvesters: A review of optimality condition for electrical tuning Smart Mater. Struct. 2020 29 033001 10.1088/1361-665X/ab6484
  63. Du S. Jia Y. Do C.D. Seshia A.A. An Efficient SSHI Interface with Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions IEEE J. Solid-State Circuits 2016 51 2729 2742 10.1109/JSSC.2016.2594943
  64. Liu Z. Zhao C. Hu G. Yang Y. A multi-degree-of-freedom triboelectric energy harvester for dual-frequency vibration energy harvesting Mech. Syst. Signal Process. 2023 188 1 20 10.1016/j.ymssp.2022.109951
  65. Lefeuvre E. Badel A. Richard C. Petit L. Guyomar D. A comparison between several vibration-powered piezoelectric generators for standalone systems Sens. Actuators A Phys. 2006 126 405 416 10.1016/j.sna.2005.10.043
  66. Seifart M. Stromversorgung Analoge Schaltungen 6th ed. Technik Berlin, Germany 2003 Chapter 22 591 639
  67. Farhi S. Papazov S. Introduction to Electromagnetism Theoretical Electric Engineering 2nd ed. Tehnika Sofia, Bulgaria 1987 Chapter 1 Part 1 5 46 (In Bulgarian)
  68. Polymer Aluminum Solid Electrolytic Capacitors MA Series—Datasheet; Fujicon Electric Company: Kowloon, Hong Kong 2024 Available online: http://www.fujicon.com/pdf/products/MA.pdf (accessed on 24 May 2024)
  69. Polymer Aluminum Solid Electrolytic Capacitors FZ Series—Datasheet. Fujicon Electric Company. Hunghom Commercial Centre, Tower A, 39 Ma Tau Wai Road, Hung Hom, Kowloon, Hong Kong 2024 Available online: http://www.fujicon.com/pdf/products/FZ.pdf (accessed on 24 May 2024)
  70. Surface-Mount Ceramic Multilayer Capacitors—Datasheet. YAGEO, 3F, 233–1, Baoqiao Rd. Xindian Dist., New Taipei City 23145 Taiwan 2024 Available online: https://www.yageo.com/upload/media/product/products/datasheet/mlcc/UPY-AC_NP0X7RX7S_6.3V-to-2KV_20.pdf (accessed on 24 May 2024)
  71. Halper M.S. Ellenbogen J.C. Supercapacitors: A Brief Overview MITRE Nanosystems Group McLean, VA, USA 2006 Available online: http://www.mitre.org/sites/default/files/pdf/06_0667.pdf (accessed on 24 May 2024)
  72. Sherrard C.G. Rolin T.D. Solid-State Ultracapacitor Polymer Composite National Aeronautics and Space Administration, Marshall Space Flight Center Huntsville, AL, USA 2022 Available online: https://ntrs.nasa.gov/citations/20220018181 (accessed on 24 May 2024)
  73. Yoshida A. Imoto K. Yoneda H. Nishimo A. An electric double-layer capacitor with high capacitance and low resistance IEEE Trans. Compon. Hybrids Manuf. Technol. 1992 15 133 138 10.1109/33.124204
  74. Bonert R. Zubieta L. Measurement techniques for the evaluation of double-layer power capacitors, IAS ’97 Proceedings of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting New Orleans, LA, USA 5–9 October 1997 10.1109/IAS.1997.628998
  75. Zubieta L. Bonert R. Characterization of double-layer capacitors (DLCs) for power electronics applications Proceedings of the 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242) St. Louis, MO, USA 12–15 October1998 10.1109/IAS.1998.730292
  76. Belhachemi F. Rael S. Davat B. A physical based model of power electric double-layer supercapacitors Proceedings of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129) Rome, Italy 8–12 October 2000 10.1109/IAS.2000.882604
  77. Naguib M. Mochalin V.N. Barsoum M.W. Gogotsi Y. 25th anniversary article: MXenes: A new family of two-dimensional materials Adv. Mater. 2014 26 992 1005 10.1002/adma.201304138
  78. Xu S. Liu W. Liu X. Kuang X. Wang X. A MXene based all-solid-state microsupercapacitor with 3D interdigital electrode Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung, Taiwan 18–22 June 2017 10.1109/TRANSDUCERS.2017.7994146
  79. Tuzluca F.N. Yesilbag Y.O. Shafiee F.N. Hamidon M.N. Ertugrul M. Two Dimensional Ti3C2Tx MXene Electrode For Supercapacitor Application Proceedings of the 2019 IEEE Regional Symposium on Micro and Nanoelectronics (RSM) Pahang, Malaysia 21–23 August 2019 10.1109/RSM46715.2019.8943528
  80. Panda S. Deshmukh K. Pasha S.K.K. Theerthagiri J. Manickam S. Choi M.Y. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives Coord. Chem. Rev. 2022 462 214518 10.1016/j.ccr.2022.214518
  81. Sanchez D.A. Leicht J. Jodka E. Fazel E. Manoli Y. 21.2 A 4 µW-to-1 mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA 31 January–4 February 2016 10.1109/ISSCC.2016.7418059
  82. Wu L. Do X.-D. Lee S.-G. Ha D.S. A Self-Powered and Optimal SSHI Circuit Integrated with an Active Rectifier for Piezoelectric Energy Harvesting IEEE Trans. Circuits Syst. I Regul. Pap. 2017 64 537 549 10.1109/TCSI.2016.2608999
  83. Chamanian S. Çiftci B. Muhtaroğlu A. Külah H. A Self-Powered and Area Efficient SSHI Rectifier for Piezoelectric Harvesters IEEE Access 2021 9 117703 117713 10.1109/ACCESS.2021.3107365
  84. Çiftci B. Chamanian S. Koyuncuoğlu A. Muhtaroğlu A. Külah H. A Low-Profile Autonomous Interface Circuit for Piezoelectric Micro-Power Generators IEEE Trans. Circuits Syst. I Regul. Pap. 2021 68 1458 1471 10.1109/TCSI.2021.3053503
  85. Ben Ammar M. Sahnoun S. Fakhfakh A. Viehweger C. Kanoun O. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting Sensors 2023 23 1830 10.3390/s23041830 36850428
  86. Ramadass Y.K. Chandrakasan A.P. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor IEEE J. Solid-State Circuits 2010 45 189 204 10.1109/JSSC.2009.2034442
  87. Li S. Roy A. Calhoun B.H. A Piezoelectric Energy-Harvesting System with Parallel-SSHI Rectifier and Integrated MPPT Achieving 417% Energy-Extraction Improvement and 97% Tracking Efficiency Proceedings of the 2019 Symposium on VLSI Circuits Kyoto, Japan 9–14 June 2019 10.23919/VLSIC.2019.8778144
  88. Du S. Jia Y. Zhao C. Amaratunga GA J. Seshia A.A. A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting IEEE J. Solid-State Circuits 2019 54 1733 1743 10.1109/JSSC.2019.2893525
  89. Peng Y. Choo K.D. Oh S. Lee I. Jang T. Kim Y. Lim J. Blaauw D. Sylvester D. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Sense-and-Set Rectifier IEEE J. Solid-State Circuits 2019 54 3348 3361 10.1109/JSSC.2019.2945262
  90. Khan M.B. Saif H. Lee Y. A Piezoelectric Energy Harvesting Interface for Irregular High Voltage Input with Partial Electric Charge Extraction with 3.9× Extraction Improvement Proceedings of the 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC) Macau, Macao 4–6 November 2019 10.1109/A-SSCC47793.2019.9056937
  91. Kwon D. Rincón-Mora G.A. A Single-Inductor 0.35 µm CMOS Energy-Investing Piezoelectric Harvester IEEE J. Solid-State Circuits 2014 49 2277 2291 10.1109/JSSC.2014.2342721
  92. Chamanian S. Muhtaroğlu A. Külah H. A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters IEEE Trans. Power Electron. 2020 35 901 912 10.1109/TPEL.2019.2910410
  93. Du S. Amaratunga GA J. Seshia A.A. A Cold-Startup SSHI Rectifier for Piezoelectric Energy Harvesters with Increased Open-Circuit Voltage IEEE Trans. Power Electron. 2019 34 263 274 10.1109/TPEL.2018.2815536
  94. Costanzo L. Lo Schiavo A. Vitelli M. A Self-Supplied Power Optimizer for Piezoelectric Energy Harvesters Operating under Non-Sinusoidal Vibrations Energies 2023 16 4368 10.3390/en16114368
  95. Hehn T. Hagedorn F. Maurath D. Marinkovic D. Kuehne I. Frey A. Manoli Y. A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters IEEE J. Solid-State Circuits 2012 47 2185 2198 10.1109/JSSC.2012.2200530
  96. LTC3588-1; Nanopower Energy Harvesting Power Supply—Datasheet. Analog Devices: Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/ltc3588-1.html (accessed on 16 October 2023)
  97. ADP5092; Ultralow Power Energy Harvester PMU with MPPT and Charge Management—Datasheet. Analog Devices: Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/adp5092.html (accessed on 16 October 2023)
  98. MAX20361; Small, Single-/Multi-Cell Solar Harvester with MPPT and Harvest Counter—Datasheet. Analog Devices: Norwood, MA, USA 2023 Available online: https://www.analog.com/en/products/max20361.html (accessed on 16 October 2023)
  99. Edla M. Lim Y.Y. Mikio D. Padilla R.V. Non-Linear Switching Circuit for Active Voltage Rectification and Ripples Reduction of Piezoelectric Energy Harvesters Energies 2022 15 709 10.3390/en15030709
  100. Haseeb A. Edla M. Ucgul M. Santoso F. Deguchi M. A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems Energies 2023 16 1631 10.3390/en16041631
  101. Haseeb A. Edla M. Thabet A.M. Deguchi M. Kamran M. A Self-Powered Dual-Stage Boost Converter Circuit for Piezoelectric Energy Harvesting Systems Energies 2023 16 2490 10.3390/en16052490
  102. Kamran M. Edla M. Thabet A.M. Haseeb A. Mikio D. Bui V. A Self-Powered FBRJT AC-DC Conversion Circuit for Piezoelectric Energy Harvesting Systems Energies 2023 16 1734 10.3390/en16041734
  103. Kamran M. Edla M. Thabet A.M. Mikio D. Bui V. A Self-Powered VDJT AC–DC Conversion Circuit for Piezoelectric Energy Harvesting Systems Designs 2023 7 94 10.3390/designs7040094

Issue

Applied Sciences (Switzerland), vol. 14, 2024, , https://doi.org/10.3390/app14114792

Цитирания (Citation/s):
1. Tesema W., Jimma W., Khan M.I., Stiens J., da Silva B. A Taxonomy of Low-Power Techniques in Wearable Medical Devices for Healthcare Applications (2024) Electronics (Switzerland), 13 (15), art. no. 3097, 2024 - 2024 - в издания, индексирани в Scopus или Web of Science
2. S. E. Osheidu, Ch. Israel-Cookey, A. R. C. Amakiri1, F. B. Sigalo, O. A. Davies, "Dimensionless Modelling of Piezoelectric Energy Harvesting with ????????????-mode Multilayer Piezoceramics using Mass-Spring Oscillator," International Journal of Research in Engineering and Science (IJRES), ISSN: 2320-9356, vol. 13, Issue 3, pp. 23-29, March 2025. - 2025 - от чужди автори в чужди издания, неиндексирани в Scopus или Web of Science

Вид: статия в списание, публикация в реферирано издание, индексирана в Scopus и Web of Science