Autors: Kougioumtzidis G., Vlahov A., Poulkov, V. K., Lazaridis P.I., Zaharis Z.D.
Title: QoE Prediction for Gaming Video Streaming in O-RAN Using Convolutional Neural Networks
Keywords: deep neural network, gaming video, open radio access network (Open RAN), QoE prediction, quality of experience (QoE)

Abstract: The growing popularity of online and cloud gaming applications is reshaping the landscape of the entertainment industry and acting as a key driver of market growth. However, the dependency of these applications on network resources poses significant challenges to the communication infrastructure. This is particularly critical as network performance plays a key role in influencing user satisfaction during gameplay. Inevitably, these inherently interactive applications are also closely linked to the concept of quality of experience (QoE), which expresses the perceived quality of a service by end-users. In this paper, we leverage deep learning methodologies to develop an objective QoE prediction model. Specifically, the proposed prediction model investigates the effect of wireless network operation on the QoE of gaming video streaming. Employing a tailored multi-headed convolutional neural network (multi-headed CNN), the model can predict in real-time the transmission-related QoE value using measurable quality of service (QoS) parameters. To validate the effectiveness of the model, tests and evaluations were conducted in an open radio access network testbed environment equipped with O-RAN-compatible interfaces.

References

  1. 2019 Year in Review: Digital Games and Interactive Media: SuperData, Nielsen Holdings Media co., New York, NY, USA: 2020.
  2. “Statista.” Accessed: Jun. 2023. [Online]. Available: https://www.statista.com
  3. F. Metzger et al., “An introduction to online video game QoS and QoE influencing factors,” IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1894–1925, 3rd Quart., 2022.
  4. O-RAN: Towards an Open and Smart RAN, O-RAN Alliance, Alfter, Germany, Oct. 2018.
  5. X. Tao, Y. Duan, M. Xu, Z. Meng, and J. Lu, “Learning QoE of mobile video transmission with deep neural network: A data-driven approach,” IEEE J. Select. Areas Commun., vol. 37, no. 6, pp. 1337–1348, Jun. 2019.
  6. G. Huang, O. Ercetin, H. Gokcesu, and G. Kalem, “Deep learning-based QoE prediction for streaming services in mobile networks,” in Proc. 18th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Thessaloniki, Greece, 2022, pp. 327–332.
  7. P. Zhou et al., “QoE-aware 3D video streaming via deep reinforcement learning in software defined networking enabled mobile edge computing,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 1, pp. 419–433, Jan.–Mar. 2021.
  8. H. Zhang, L. Dong, G. Gao, H. Hu, Y. Wen, and K. Guan, “DeepQoE: A multimodal learning framework for video quality of experience (QoE) prediction,” IEEE Trans. Multimedia, vol. 22, no. 12, pp. 3210–3223, Dec. 2020, doi: 10.1109/TMM.2020.2973828.
  9. A. Renda, P. Ducange, G. Gallo, and F. Marcelloni, “XAI models for quality of experience prediction in wireless networks,” in Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), 2021, pp. 1–6.
  10. V. Vasilev, J. Leguay, S. Paris, L. Maggi, and M. Debbah, “Predicting QoE factors with machine learning,” in Proc. IEEE Int. Conf. Commun. (ICC), 2018, pp. 1–6.
  11. A. Ahmad, A. B. Mansoor, A. A. Barakabitze, A. Hines, L. Atzori, and R. Walshe, “Supervised-learning-based QoE prediction of video streaming in future networks: A tutorial with comparative study,” IEEE Commun. Mag., vol. 59, no. 11, pp. 88–94, Nov. 2021.
  12. S. Zadtootaghaj, N. Barman, S. Schmidt, M. G. Martini, and S. Möller, “NR-GVQM: A no reference gaming video quality metric,” in Proc. IEEE Int. Symp. Multimedia (ISM), 2018, pp. 131–134.
  13. N. Barman, E. Jammeh, S. A. Ghorashi, and M. G. Martini, “No-reference video quality estimation based on machine learning for passive gaming video streaming applications,” IEEE Access, vol. 7, pp. 74511–74527, 2019.
  14. N. J. Avanaki, S. Zadtootaghaj, N. Barman, S. Schmidt, M. G. Martini, and S. Möller, “Quality enhancement of gaming content using generative adversarial networks,” in Proc. Twelfth Int. Conf. Quality Multimedia Exp. (QoMEX), 2020, pp. 1–6.
  15. S. Göring, R. R. R. Rao, and A. Raake, “nofu—A lightweight no-reference pixel based video quality model for gaming content,” in Proc. 11th Int. Conf. Qual. Multimedia Exp. (QoMEX), 2019, pp. 1–6.
  16. M. Utke, S. Zadtootaghaj, S. Schmidt, S. Bosse, and S. Möller, “NDNetGaming-development of a no-reference deep CNN for gaming video quality prediction,” Multimed Tools Appl., vol. 81, no. 3, pp. 3181–3203, Jan. 2022.
  17. S. Van Damme, M. T. Vega, J. Heyse, F. De Backere, and F. De Turck, “A low-complexity psychometric curve-fitting approach for the objective quality assessment of streamed game videos,” Signal Process. Image Commun., vol. 88, Oct. 2020, Art. no. 115954.
  18. S. Zadtootaghaj et al., “DEMI: Deep video quality estimation model using perceptual video quality dimensions,” in Proc. IEEE 22nd Int. Workshop Multimedia Signal Process. (MMSP), 2020, pp. 1–6.
  19. S. Wen, S. Ling, J. Wang, X. Chen, Y. Jing, and P. L. Callet, “Subjective and objective quality assessment of mobile gaming video,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2022, pp. 1810–1814.
  20. S. Möller, S. Schmidt, and J. Beyer, “Gaming taxonomy: An overview of concepts and evaluation methods for computer gaming QoE,” in Proc. 5th Int. Workshop Qual. Multimedia Exp. (QoMEX), Klagenfurt am Wörthersee, Austria, 2013, pp. 236–241.
  21. G. Kougioumtzidis, V. Poulkov, Z. Zaharis, and P. Lazaridis, “QoE assessment aspects for virtual reality and holographic telepresence applications,” in Proc. 6th EAI Int. Conf. Future Access Enablers Ubiquitous Intell. Infrastruct. (FABULOUS), 2022, pp. 171–180.
  22. R. Schatz, T. Hoßfeld, L. Janowski, and S. Egger, “From packets to people: Quality of experience as a new measurement challenge,” in Data Traffic Monitoring and Analysis (Lecture Notes in Computer Science, 7754), E. Biersack, C. Callegari, and M. Matijasevic, Eds. Berlin, Germany: Springer, 2013, pp. 219–263.
  23. Mean Opinion Score (MOS) Terminology, ITU-T. P.800.1, Int. Telecommun. Union, Geneva, Switzerland, 2006.
  24. M. A. Alreshoodi and J. C. Woods, “Survey on QoE/QoS correlation models for multimedia,” Int. J. Distrib. Parallel Syst., vol. 4, no. 3, pp. 53–72, 2013.
  25. Y. Wang, W. Zhou, and P. Zhang, QoE Management in Wireless Networks (Springer Briefs in Electrical and Computer Engineering). Cham, Switzerland: Springer, 2017.
  26. K. Brunnström et al., “Qualinet white paper on definitions of quality of experience,” in Proc. Output 5th Qualinet Meet., 2013, pp. 1–25.
  27. Influence Factors on Gaming Quality of Experience, ITU-T G.1032, Int. Telecommun. Union, Geneva, Switzerland, 2017.
  28. O. S. Peñaherrera-Pulla, C. Baena, S. Fortes, E. Baena, and R. Barco, “Measuring key quality indicators in cloud gaming: Framework and assessment over wireless networks,” Sensors, vol. 21, no. 4, p. 1387, Feb. 2021.
  29. U. Reiter et al., “Factors influencing quality of experience,” in Quality of Experience: Advanced Concepts, Applications and Methods (T-Labs Series in Telecommunication Services), S. Möller and A. Raake, Eds. Cham, Switzerland: Springer, 2014, pp. 55–72.
  30. P. Quax, A. Beznosyk, W. Vanmontfort, R. Marx, and W. Lamotte, “An evaluation of the impact of game genre on user experience in cloud gaming,” in Proc. IEEE Int. Games Innov. Conf. (IGIC), 2013, pp. 216–221.
  31. M. Ries, P. Svoboda, and M. Rupp, “Empirical study of subjective quality for massive multiplayer games,” in Proc. 15th Int. Conf. Syst., Signals Image Process. (IWSSIP), Bratislava, Slovakia, 2008, pp. 181–184.
  32. Z.-Y. Wen and H.-F. Hsiao, “QoE-driven performance analysis of cloud gaming services,” in Proc. IEEE 16th Int. Workshop Multimedia Signal Process. (MMSP), 2014, pp. 1–6.
  33. K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and C.-H. Hsu, “On the quality of service of cloud gaming systems,” IEEE Trans. Multimedia, vol. 16, no. 2, pp. 480–495, Feb. 2014.
  34. G. Kougioumtzidis, V. Poulkov, Z. D. Zaharis, and P. I. Lazaridis, “A survey on multimedia services QoE assessment and machine learning based prediction,” IEEE Access, vol. 10, pp. 19507–19538, 2022.
  35. J. Korhonen, N. Burini, J. You, and E. Nadernejad, “How to evaluate objective video quality metrics reliably,” in Proc. 4th Int. Workshop Qual. Multimedia Exp. (QoMEX), Melbourne, VIC, Australia, 2012, pp. 57–62.
  36. T. Hoßfeld, P. Tran-Gia, and M. Fiedler, “Quantification of quality of experience for edge-based applications,” in Proc. 1st Int. Teletraffic Congr. (ITC), 2007, pp. 361–373.
  37. P. Reichl, S. Egger, R. Schatz, and A. D’Alconzo, “The logarithmic nature of QoE and the role of the weber-fechner law in QoE assessment,” in Proc. IEEE Int. Conf. Commun. (ICC), Cape Town, South Africa, 2010, pp. 1–5.
  38. S. Khorsandroo, R. M. Noor, and S. Khorsandroo, “The role of psychophysics laws in quality of experience assessment: A video streaming case study,” in Proc. Int. Conf. Adv. Comput., Commun. Inform. (ICACCI), 2012, pp. 446–452.
  39. G. Kougioumtzidis, V. Poulkov, Z. D. Zaharis, and P. I. Lazaridis, “Intelligent and QoE-aware open radio access networks,” in Proc. 3rd URSI Atlantic Radio Sci. Meet. (AT-AP-RASC), Gran Canaria, Spain, 2022, pp. 1–4.
  40. F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen, “OpenAirInterface: Democratizing innovation in the 5G Era,” Comput. Netw., vol. 176, Jul. 2020, Art. no. 107284.
  41. O-RAN Use Cases and Deployment Scenarios, O-RAN Alliance, Alfter, Germany, Feb. 2020.
  42. A. Vlahov, G. Kougioumtzidis, A. Mihovska, and V. Poulkov, “Performance analysis of evolved RAN architectures with open interfaces,” J. Mobile Multimedia, vol. 19, no. 1, pp. 239–262, Sep. 2022.
  43. “Prometheus.” Accessed: Dec. 2022. [Online]. Available: https://prometheus.io/
  44. “InfluxData.” Accessed: Dec. 2022. [Online]. Available: https://www.influxdata.com/time-series-platform/telegraf/
  45. “Grafana.” Accessed: Dec. 2022. [Online]. Available: https://grafana.com/
  46. G. Kougioumtzidis, V. Poulkov, Z. Zaharis, and P. Lazaridis, “Machine learning for QoE management in future wireless networks,” in Proc. 34th Gen. Assembly Sci. Symp. Int. Union Radio Sci. (URSI GASS), Rome, Italy, 2021, pp. 1–4.
  47. R. Levie, “Curve fitting with least squares,” Critical Rev. Anal. Chem., vol. 30, no. 1, pp. 59–74, Jun. 2010.
  48. “Python.” Accessed: Dec. 2022. [Online]. Available: https://www.python.org/
  49. K. Wang et al., “Multiple convolutional neural networks for multivariate time series prediction,” Neurocomputing, vol. 360, pp. 107–119, Sep. 2019.
  50. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.
  51. M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-based machine learning for wireless networks: A tutorial,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071, 4th Quart., 2019.
  52. “Tensorflow.” Accessed: Dec. 2022. [Online]. Available: https://www.tensorflow.org/learn
  53. “Keras.” Accessed: Dec. 2022. [Online]. Available: https://keras.io/

Issue

IEEE Open Journal of the Communications Society, vol. 5, pp. 1167-1181, 2024, , https://doi.org/10.1109/OJCOMS.2024.3362275

Copyright IEEE

Цитирания (Citation/s):
1. Bilucaglia M.; Laureanti R.; Zito M.; Fici A.; Rivetti F.; Bellati M.; Accardi S.; Wahl S.; Mainardi L.T.; Russo V., "Bioelectrical Measurements of Lenses Effect During Esports Training Sessions: Could the Yellow Lenses Enhance Gaming Performance?", 2024 IEEE Gaming, Entertainment, and Media Conference, GEM 2024, 2024, DOI: 10.1109/GEM61861.2024.10585538. - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science