| Autors: Kougioumtzidis G., Vlahov A., Poulkov, V. K., Lazaridis P.I., Zaharis Z.D. Title: QoE Prediction for Gaming Video Streaming in O-RAN Using Convolutional Neural Networks Keywords: deep neural network, gaming video, open radio access network (Open RAN), QoE prediction, quality of experience (QoE) Abstract: The growing popularity of online and cloud gaming applications is reshaping the landscape of the entertainment industry and acting as a key driver of market growth. However, the dependency of these applications on network resources poses significant challenges to the communication infrastructure. This is particularly critical as network performance plays a key role in influencing user satisfaction during gameplay. Inevitably, these inherently interactive applications are also closely linked to the concept of quality of experience (QoE), which expresses the perceived quality of a service by end-users. In this paper, we leverage deep learning methodologies to develop an objective QoE prediction model. Specifically, the proposed prediction model investigates the effect of wireless network operation on the QoE of gaming video streaming. Employing a tailored multi-headed convolutional neural network (multi-headed CNN), the model can predict in real-time the transmission-related QoE value using measurable quality of service (QoS) parameters. To validate the effectiveness of the model, tests and evaluations were conducted in an open radio access network testbed environment equipped with O-RAN-compatible interfaces. References
Issue
Copyright IEEE |
Цитирания (Citation/s):
1. Bilucaglia M.; Laureanti R.; Zito M.; Fici A.; Rivetti F.; Bellati M.; Accardi S.; Wahl S.; Mainardi L.T.; Russo V., "Bioelectrical Measurements of Lenses Effect During Esports Training Sessions: Could the Yellow Lenses Enhance Gaming Performance?", 2024 IEEE Gaming, Entertainment, and Media Conference, GEM 2024, 2024, DOI: 10.1109/GEM61861.2024.10585538. - 2024 - в издания, индексирани в Scopus и/или Web of Science
2. Ladoczki B., Accelerating Machine Learning Models for Video Streaming Traffic, 2025, 2025 International Conference on Computing Networking and Communications Icnc 2025, issue 0, pp. 300-306, DOI 10.1109/ICNC64010.2025.10993728 - 2025 - в издания, индексирани в Scopus
3. Telili A., Hamidouche W., Amirpour H., Fezza S.A., Timmerer C., Morin L., Convex Hull Prediction Methods for Bitrate Ladder Construction: Design, Evaluation, and Comparison, 2025, ACM Transactions on Multimedia Computing Communications and Applications, issue 7, vol. 21, DOI 10.1145/3723006, issn 15516857, eissn 15516865 - 2025 - в издания, индексирани в Scopus и/или Web of Science
4. Ayyalusamy G.K., Rao S., Cherukuri P.A.A., Kalra B., Rajput G.K., Goel A., Optimizing Convolutional Neural Networks for Real-Time Image Classification in Video Streams, 2025, Iet Conference Proceedings, issue 7, vol. 2025, pp. 1394-1399, DOI 10.1049/icp.2025.1597, eissn 27324494 - 2025 - в издания, индексирани в Scopus
5. Shirmarz A., Bragatto M.N., Verdi F.L., Singh S.K., Rothenberg C.E., Patra G., Pongracz G., In-Network AR/CG Traffic Classification Entirely Deployed in the Programmable Data Plane: Unlocking RTP Features and L4S Integration, 2025, Proceedings of the 11th IEEE International Conference on Network Softwarization Netsoft 2025, issue 0, pp. 477-485, DOI 10.1109/NetSoft64993.2025.11080610 - 2025 - в издания, индексирани в Scopus и/или Web of Science
6. Nie T., Dynamic optimization of television media parameters based on reinforcement learning and causal reasoning, 2025, Journal of Computational Methods in Sciences and Engineering, issue 0, DOI 10.1177/14727978251380837, issn 14727978 - 2025 - в издания, индексирани в Scopus и/или Web of Science
7. Shirmarz A., de Castro Ariel G., Lopes V.H.S., Verdi F., Luizelli M., Rothenberg C., CGSynth: Cloud Gaming Synthesizer, 2025, SIGCOMM 2025 Proceedings of the 2025 ACM SIGCOMM 2025 Posters and Demos, issue 0, pp. 175-177, DOI 10.1145/3744969.3748445 - 2025 - в издания, индексирани в Scopus
8. Fiorina G., Wildbaum M., Gonzalez C.C., Pupo E.F., Floris A., Porcu S., Murroni M., Sotelo R., Estimating Quality of Experience in Multicast Point Cloud Streaming over 5G Networks, 2025, IEEE International Symposium on Broadband Multimedia Systems and Broadcasting Bmsb, issue 0, DOI 10.1109/BMSB65076.2025.11165660, issn 21555044, eissn 21555052 - 2025 - в издания, индексирани в Scopus
9. Mahmood A.N., Mahmud M.N., Salleh M.F.M., Challenges and Solutions for Video Streaming Services Quality of Experience (QoE) Prediction Toward 6G Wireless Networks, 2025, Journal of Internet Services and Information Security, issue 2, vol. 15, pp. 694-726, DOI 10.58346/JISIS.2025.I2.047, issn 21822069, eissn 21822077 - 2025 - в издания, индексирани в Scopus
10. Shirmarz, A, Goes de Castro, A, Lopes, VHS, Verdi, F, Luizelli, M, Rothenberg, C, , DEMO: CGSynth: Cloud Gaming Synthesizer, PROCEEDINGS OF THE 2025 ACM SIGCOMM 2025 POSTERS AND DEMOS, SIGCOMM 2025, 2025, eisbn: 979-8-4007-2026-0, doi: 10.1145/3744969.3748445 - 2025 - в издания, индексирани в Web of Science
11. Garcia R.D., Ramachandran G.S., Rothenberg C.E., Krishnamachari B., Ueyama J., A survey of privacy-preserving mechanisms on quality of experience in next-generation networks, 2026, Computer Networks, issue 0, vol. 275, DOI 10.1016/j.comnet.2025.111899, issn 13891286 - 2025 - в издания, индексирани в Scopus
12. Selma T., Farhad M., Masud M.M., Harous S., From Facial Expressions to Engagement: A Comprehensive Multimodal Approach to Infer Video Streaming User Experience, 2025, IEEE Access, issue 0, DOI 10.1109/ACCESS.2025.3641843, eissn 21693536 - 2025 - в издания, индексирани в Scopus
Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science