Autors: Yotov, O. B., Aleksieva-Petrova, A. P. Title: Data-Driven Prediction Model for Analysis of Sensor Data Keywords: Fourier Transformation, Industry 4.0, Principal Component Analysis, Wavelet TransformationAbstract: In view of Industry 4.0, data generation and analysis are challenges. For example, machine health monitoring and remaining useful life prediction use sensor signals, which are difficult to analyze using traditional methods and mathematical techniques. Machine and deep learning algorithms have been used extensively in Industry 4.0 to process sensor signals and improve the accuracy of predictions. Therefore, this paper proposes and validates the data-driven prediction model to analyze sensor data, including in the data transformation phase Principal Component Analysis tested by Fourier Transformation and Wavelet Transformation, and the modeling phase based on machine and deep learning algorithms. The machine learning algorithms used for tests in this research are Random Forest Regression (RFR), Multiple Linear Regression (MLR), and Decision Tree Regression (DTR). For the deep learning comparison, the algorithms are Deep Learning Regression and Convolutional network with LeNet-5 Architecture. The experimental results indicate that the models show promising results in predicting wear values and open the problem to further research, reaching peak values of 92.3% accuracy for the first dataset and 62.4% accuracy for the second dataset. References - Wan J. Tang S. Li D. Wang S. Liu C. Abbas H. A Manufacturing Big Data Solution for Active Preventive Maintenance IEEE Trans. Ind. Inform. 2017 13 2039 2047 10.1109/TII.2017.2670505
- Soualhi A. Lamraoui M. Elyousfi B. Razik H. PHM SURVEY: Implementation of prognostic methods for monitoring industrial systems Energies 2022 15 6909 10.3390/en15196909
- Antonini M. Pincheira M. Vecchio M. Antonelli F. An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments Sensors 2023 23 2344 10.3390/s23042344 36850940
- Assafo M. Städter J.P. Meisel T. Langendörfer P. On the Stability and Homogeneous Ensemble of Feature Selection for Predictive Maintenance: A Classification Application for Tool Condition Monitoring in Milling Sensors 2023 23 4461 10.3390/s23094461 37177665
- Zhang Q. Yang L.T. Yan Z. Chen Z. Li P. An Efficient Deep Learning Model to Predict Cloud Workload for Industry Informatics IEEE Trans. Ind. Inform. 2018 14 3170 3178 10.1109/TII.2018.2808910
- Zhang Q. Yang L.T. Chen Z. Li P. A Tensor-Train Deep Computation Model for Industry Informatics Big Data Feature Learning IEEE Trans. Ind. Inform. 2018 14 3197 3204 10.1109/TII.2018.2791423
- Ota K. Dao M.S. Mezaris V. de Natale F.G.B. Deep Learning for Mobile Multimedia ACM Trans. Multimed. Comput. Commun. Appl. 2017 13 1 22 10.1145/3092831
- Latif A. Mehedi I.M. Vellingiri M.T. Meem R.J. Palaniswamy T. Enhanced Remora Optimization with Deep Learning Model for Intelligent PMSM Drives Temperature Prediction in Electric Vehicles Axioms 2023 12 852 10.3390/axioms12090852
- Tran M.-Q. Doan H.P. Vu V.Q. Vu L.T. Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects Measurment 2023 207 112351 10.1016/j.measurement.2022.112351
- Failing J.M. Abellán-Nebot J.V. Benavent Nácher S. Rosado Castellano P. Romero Subirón F. A Tool Condition Monitoring System Based on Low-Cost Sensors and an IoT Platform for Rapid Deployment Processes 2023 11 668 10.3390/pr11030668
- Hassan M. Ahmad S. Helmi A. A Real-Time Deep Machine Learning Approach for Sudden Tool Failure Prediction and Prevention in Machining Processes Sensors 2023 23 3894 10.3390/s23083894
- Wang J. Ma Y. Zhang L. Gao R.X. Wu D. Deep learning for smart manufacturing: Methods and applications J. Manuf. Syst. 2018 48 144 156 10.1016/j.jmsy.2018.01.003
- Bhat D. Muench S. Roellig M. Application of Machine Learning Algorithms in Prognostics and Health Monitoring of Electronic Systems: A Review e-Prime—Adv. Electr. Eng. Electron. Energy 2023 4 100166 10.1016/j.prime.2023.100166
- Yan J. He Z. He S. A deep learning framework for sensor-equipped machine health indicator construction and remaining useful life prediction Comput. Ind. Eng. 2022 172 108559 10.1016/j.cie.2022.108559
- Dipietrangelo F. Nicassio F. Scarselli G. Structural Health Monitoring for impact localization via machine learning Mech. Syst. Signal Process. 2023 183 109621 10.1016/j.ymssp.2022.109621
- Tran D.H. Nguyen V.L. Nguyen H. Jang Y.M. Self-supervised learning for time-series anomaly detection in Industrial Internet of Things Electronics 2022 11 2146 10.3390/electronics11142146
- Tang M. Liang L. Zheng Z. Chen J. Chen D. Anomaly Detection of Permanent Magnet Synchronous Motor Based on Improved DWT-CNN Multi-Current Fusion Sensors 2024 24 2553 10.3390/s24082553
- Chirayil Nandakumar S. Mitchell D. Erden M. Anomaly Detection Methods in Autonomous Robotic Missions Sensors 2024 24 1330 10.3390/s24041330 38400491
- Kubik C. Molitor D.A. Becker M. Groche P. Knowledge Discovery in Engineering Applications Using Machine Learning Techniques J. Manuf. Sci. Eng. 2022 144 091003 10.1115/1.4054158
- Rahman M.M. Farahani M.A. Wuest T. Multivariate Time-Series Classification of Critical Events from Industrial Drying Hopper Operations: A Deep Learning Approach J. Manuf. Mater. Process. 2023 7 164 10.3390/jmmp7050164
Issue
| Electronics (Switzerland), vol. 13, 2024, , https://doi.org/10.3390/electronics13101799 |
|