Autors: Wang J., Hu Y., Dong X., Wang Y., Tao J., Yan B., Zheng W., Velichkova, R. T., Chen G.
Title: Aqueous phase reforming of various compounds in biomass derived products over Ni/α-MoO3 catalysts: Effect of alkali and alkaline earth metals
Keywords: Alkali and alkaline earth metals, Aqueous phase reforming, Hydrogen generation, Wastewater treatment

Abstract: In this study, APR of various functional groups in biomass derived products over Ni/α-MoO3 catalyst toward hydrogen production and pollutants control was investigated. The effect of different AAEMs was comprehensively studied under a temperature of 225 °C and a residence time of 30 min. Findings demonstrated that Na, K, Ca, and Mg all showed hydrogen generation and total organic carbon removal capability, whose performances were competitive to Ni/α-MoO3 catalyst. Moreover, although the presence of single K suppressed the removal of total nitrogen (TN), the combination of K and the Ni/α-MoO3 catalyst exhibited the optimal removal efficiency of TN (69.92 %). A series of characterization results revealed that the AAEMs effectively prevented Ni leaching in the hydrothermal environment of the Ni/α-MoO3 catalysts and promoted the formation of oxygen vacancies, inhibiting carbon deposition and deactivation of the catalyst.

References

  1. Cortright, R.D., Davda, R.R., Dumesic, J.A., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418 (2002), 964–967, 10.1038/nature01009.
  2. Oliveira, A.S., Baeza, J.A., Calvo, L., Alonso-Morales, N., Heras, F., Rodriguez, J.J., et al. Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Appl Catal B 245 (2019), 367–375, 10.1016/j.apcatb.2018.12.061.
  3. Oliveira, A.S., Aho, A., Baeza, J.A., Calvo, L., Simakova, I.L., Gilarranz, M.A., et al. Enhanced H2production in the aqueous-phase reforming of maltose by feedstock pre-hydrogenation. Appl Catal B, 281, 2021, 119469, 10.1016/j.apcatb.2020.119469.
  4. Oliveira, A.S., Baeza, J.A., Garcia, D., Saenz de Miera, B., Calvo, L., Rodriguez, J.J., et al. Effect of basicity in the aqueous phase reforming of brewery wastewater for H2production. Renew Energy 148 (2020), 889–896, 10.1016/j.renene.2019.10.173.
  5. Saenz de Miera, B., Oliveira, A.S., Baeza, J.A., Calvo, L., Rodriguez, J.J., Gilarranz, M.A., Treatment and valorisation of fruit juice wastewater by aqueous phase reforming: Effect of pH, organic load and salinity. J Clean Prod, 252, 2020, 119849, 10.1016/j.jclepro.2019.119849.
  6. Remón, J., Ruiz, J., Oliva, M., García, L., Arauzo, J., Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming. Energ Conver Manage 124 (2016), 453–469, 10.1016/j.enconman.2016.07.044.
  7. Remón, J., Laseca, M., García, L., Arauzo, J., Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound. Energ Conver Manage 114 (2016), 122–141, 10.1016/j.enconman.2016.02.009.
  8. Remón, J., García, L., Arauzo, J., Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Process Technol 154 (2016), 66–81, 10.1016/j.fuproc.2016.08.012.
  9. Wang, J., Liu, Z., Liang, R., Yan, B., Tao, J., Hong, S.u., et al. Aqueous phase reforming of distiller's grain derived biogas Plant wastewater over α-MoO3nanosheets. Chem Eng J, 430, 2022, 132735, 10.1016/j.cej.2021.132735.
  10. Kai, W.u., Dou, B., Zhang, H.a., Liu, D., Chen, H., Yujie, X.u., Aqueous phase reforming of biodiesel byproduct glycerol over mesoporous Ni-Cu/CeO2for renewable hydrogen production. Fuel, 308, 2022, 122014, 10.1016/j.fuel.2021.122014.
  11. Yang, Jie, (Sophia) He, Quan, Niu, Haibo, Corscadden, Kenneth, Tess Astatkie. Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration. Applied Energy 228 (2018), 1618–1628, 10.1016/j.apenergy.2018.06.142.
  12. Tao, J., Li, J., Yan, B., Chen, G., Cheng, Z., Li, W., et al. Catalytic Reforming: A Potentially Promising Method for Treating and Utilizing Wastewater from Biogas Plants. Environ Sci Tech 54 (2020), 577–585, 10.1021/acs.est.9b06001.
  13. Lin, L., Qiaolin, Y.u., Peng, M.i., Li, A., Yao, S., Tian, S., et al. Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water. J Am Chem Soc 143 (2021), 309–317, 10.1021/jacs.0c10776.
  14. Pipitone, G., Zoppi, G., Pirone, R., Bensaid, S., A critical review on catalyst design for aqueous phase reforming. Int J Hydrogen Energy 47:1 (2022), 151–180, 10.1016/j.ijhydene.2021.09.206.
  15. Jiang, L., Song, H.u., Sun, L.-S., Sheng, S.u., Kai, X.u., He, L.-m., et al. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour Technol 146 (2013), 254–260, 10.1016/j.biortech.2013.07.063.
  16. Mengting, X.u., Xing, J., Yuan, B.o., He, L., Liheng, L.u., Chen, N., et al. Organic small-molecule fluorescent probe-based detection for alkali and alkaline earth metal ions in biological systems. J Mater Chem B 11 (2023), 3295–3306, 10.1039/D3TB00268C.
  17. Zhu, H., Liao, Q.i., Lintao, H.u., Xie, L., Baolin, Q.u., Gao, R., Effect of removal of alkali and alkaline earth metals in cornstalk on slagging/fouling and co-combustion characteristics of cornstalk/coal blends for biomass applications. Renew Energy 207 (2023), 275–285, 10.1016/j.renene.2023.03.022.
  18. Junqin, Y.u., Guo, Q., Yan Gong, L.u., Ding, J.W., Guangsuo, Y.u., A review of the effects of alkali and alkaline earth metal species on biomass gasification. Fuel Process Technol, 214, 2021, 106723, 10.1016/j.fuproc.2021.106723.
  19. Tian, X., Wang, Y., Zeng, Z., Dai, L., Jiamin, X.u., Cobb, K., et al. Research progress on the role of common metal catalysts in biomass pyrolysis: a state-of-the-art review. Green Chem 24 (2022), 1–21, 10.1039/D1GC04537G.
  20. Wang, W., Lemaire, R., Bensakhria, A., Luart, D., Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J Anal Appl Pyrol, 163, 2022, 105479, 10.1016/j.jaap.2022.105479.
  21. Pendem, C., Sarkar, B., Nazia Siddiqui, L.N., Konathala, S., Baskar, C., Bal, R., K-Promoted Pt-Hydrotalcite catalyst for production of H2by aqueous phase reforming of glycerol. ACS Sustain Chem Eng 6 (2018), 2122–2131, 10.1021/acssuschemeng.7b03512.
  22. Wang, J., Tao, J., Dong, X., Liu, Z., Hou, D., Yongjie, H.u., et al. Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fe2O3·α-MoO3catalyst. J Environ Manage, 3200, 2022, 115827, 10.1016/j.jenvman.2022.115827.
  23. Wang, J., Chen, Y., Tao, J., Kumar, A., Liu, Z., Yan, B., et al. Ni/MOFs-derived α-MoO3catalyst for renewable hydrogen production and treatment of biogas slurry by aqueous-phase reforming. Fuel Process Technol, 245, 2023, 107738, 10.1016/j.fuproc.2023.107738.
  24. Wang, H., Wang, L., Lin, D., Feng, X., Niu, Y., Zhang, B., et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nat Catal 4 (2021), 418–424, 10.1038/s41929-021-00611-3.
  25. Xin, H., Lin, L.e., Li, R., Li, D., Song, T., Rentao, M.u., et al. Overturning CO2hydrogenation selectivity with high activity via reaction-Induced strong metal–Support interactions. J Am Chem Soc 144:11 (2022), 4874–4882, 10.1021/jacs.1c12603.
  26. Liu, W., Zhang, X., Qv, Y., Jiang, H., Hanqing, Y.u., Bio-oil upgrading at ambient pressure and temperature using zero valent metals. Green Chem 14 (2012), 2226–2233, 10.1039/C2GC35426H.
  27. El Hajjouji, H., Merlina, G., Pinelli, E., Winterton, P., Revel, J.-C., Hafidi, M.,13C-NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content. J Hazard Mater 154 (2008), 927–932, 10.1016/j.jhazmat.2007.10.105.
  28. Yang, S., Liu, Y., Chen, T., Jin, W., Yang, T., Cao, M., et al. Zn doped MoO3nanobelts and the enhanced gas sensing properties to ethanol. Appl Surf Sci 393 (2017), 377–384, 10.1016/j.apsusc.2016.10.021.
  29. Yeol-Lim Lee, Ajay Jha, Won-Jun Jang, Jae-Oh Shim, Chandrashekhar V. Rode, Byong-Hun Jeon, Jong Wook Bae, Hyun-Seog Roh. Effect of alkali and alkaline earth metal on Co/CeO2catalyst for the water-gas shift reaction of waste derived synthesis gas. Applied Catalysis A: General, 2018, 551, 63–70. doi: 10.1016/j.apcata.2017.12.009.
  30. Zhao, J., Zhang, Y., Guo, H., Ren, J., Zhang, H., Yuhao, W.u., et al. Defect-rich Ni(OH)2/NiO regulated by WO3as core–shell nanoarrays achieving energy-saving water-to-hydrogen conversion via urea electrolysis. Chem Eng J, 433, 2022, 134497, 10.1016/j.cej.2022.134497.
  31. Liang, W., Dong, P., Le, Z., Lin, X., Gong, X., Xie, F., et al. Electron density modulation of MoO2/Ni to produce superior hydrogen evolution and oxidation activities. ACS Appl Mater Interfaces 13:33 (2021), 39470–39479, 10.1021/acsami.1c11025.
  32. Belen García-Jarana, M., Portela, J.R., Sánchez-Oneto, J., Enrique, J., Martinez de la Ossa, Bushra Al-Duri. Analysis of the supercritical water gasification of cellulose in a continuous system using short residence times. Appl Sci, 10, 2020, 5185, 10.3390/app10155185.
  33. Chengyi, L.u., Rooney, D.W., Jiang, X., Sun, W., Wang, Z., Wang, J., et al. Achieving high specific capacity of lithium-ion battery cathodes by modification with “N–Ȯ” radicals and oxygen-containing functional groups. J Mater Chem A 5:47 (2017), 24636–24644, 10.1039/C7TA08688A.
  34. Tingting, X.u., Hur, J., Niu, P., Wang, S., Lee, S., Chun, S.-E., et al. Synthesis of crystalline g-C3N4with rock/molten salts for efficient photocatalysis and piezocatalysis. Green Energy Environ, 2022, 10.1016/j.gee.2022.10.004.
  35. Zhang, Y., Aly, M., Effect of CO2on activity and coke formation over gallium-based catalysts for propane dehydrogenation. Appl Catal A, 643, 2022, 118795, 10.1016/j.apcata.2022.118795.
  36. Wu, Jinwei, Gao, Jie, Lian, Shuangshuang, Li, Jianpeng, Sun, Kaihang, Zhao, Shufang, et al. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation. Applied Catalysis B: Environmental(314), 2022, 121516, 10.1016/j.apcatb.2022.121516.

Issue

Fuel, vol. 359, 2024, , https://doi.org/10.1016/j.fuel.2023.130388

Цитирания (Citation/s):
1. Wang Ruiyi, Guo, Shuai,,, Zhang Jin, Li Xincheng, Lu Kuan, Gu Xianmo, Wang Yunwei, Zheng Zhanfeng, Oxygen vacancies promoted hydrogen production from methanol aqueous phase reforming over MgAl−LDHs supported plasmonic Ru nanoparticles catalyst, Applied Catalysis A: General, Volume 687, ISSN 0926860X , DOI 10.1016/j.apcata.2024.119964 - 2024 - в издания, индексирани в Scopus или Web of Science
2. Fu Naiwei, Wang, Ruiyi, Gu Xianmo, Wang, Yunwei, Ren, Jun, Zheng, Zhanfeng, Size-modulated Pt nanoparticles for low-temperature plasmon-enhanced hydrogen production from aqueous phase reforming of methanol, Chemical Engineering Journal, V. 498, ISSN 13858947 DOI 10.1016/j.cej.2024.155825 - 2024 - в издания, индексирани в Scopus или Web of Science

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus