Autors: Terziev, A. K., Zlateva P., Ivanov, M. P.
Title: Enhancing the Fermentation Process in Biogas Production from Animal and Plant Waste Substrates in the Southeastern Region of Bulgaria
Keywords: animal and vegetable waste substrates, biogas plants, fertilizer for agriculture, production of combined energy

Abstract: Annually, a huge amount of waste from plant biomass and animal manure is produced from agriculture and animal farming. Many studies provide information on the biomethane potential of agricultural and livestock wastes, but only a few studies have investigated the application of the substrates in combination. The objective of the study is to enhance the fermentation process in the digester for biogas production, obtained from animal and plant waste substrates. In four batch processes for three months, the temperatures and the residence time of the substrates in the fermenter were analyzed. Simultaneously, electricity and thermal energy were produced via cogeneration units, which were exported to the public grid and city heating network. The plant substrate is a silage mixture of corn and wheat waste. The animal substrate is a mixture of beef and pig manure. Animal and vegetable waste raw materials are collected and transported to the site, located in the region of southeastern Bulgaria. The total annual consumption of animal and plant waste is 17,971 t/year. The enhancement of the process leads to the production of 1,506,000 Nm3 CH4/a of methane, the generation of which requires 299.63 MWh/a of electricity and 649.09 MWh/a thermal energy.

References

  1. Rutz D. Mergner R. Janssen R. Sustainable Heat Use of Biogas Plants: A Handbook 2nd ed. WIP Renewable Energies Munich, Germany 2015
  2. Ignatowicz K. Filipczak G. Dybek B. Wałowski G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples Energies 2023 16 798 10.3390/en16020798
  3. Khan I.U. Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage Energy Convers. Manag. 2017 150 277 294 10.1016/j.enconman.2017.08.035
  4. Achinas S. Achinas V. Euverink G.J.W. A Technological Overview of Biogas Production from Biowaste Engineering 2017 3 299 307 10.1016/J.ENG.2017.03.002
  5. Pollard S.J.T. Smith R. Longhurst P.J. Eduljee G.H. Hall D. Recent developments in the application of risk analysis to waste technologies Environ. Int. 2006 32 1010 1020 10.1016/j.envint.2006.06.007
  6. Bardi U. Pierini V. Lavacchi A. Mangeant C. Peak Waste? The Other Side of the Industrial Cycle Sustainability 2014 6 4119 4132 10.3390/su6074119
  7. Mahjoub B. Domscheit E. Chances and challenges of an organic waste–based bioeconomy Curr. Opin. Green Sustain. Chem. 2020 25 100388 10.1016/j.cogsc.2020.100388
  8. Olabi A.G. Circular economy and renewable energy Energy 2019 181 450 454 10.1016/j.energy.2019.05.196
  9. Clark J.H. Green biorefinery technologies based on waste biomass Green Chem. 2019 21 1168 1170 10.1039/C9GC90021G
  10. Shemfe M. Ng K.S. Sadhukhan J. Bioelectrochemical Systems for biofuel (electricity, hydrogen, and methane) and valuable chemical production Green Chemistry for Sustainable Biofuel Production Gude V.G. Apple Academic Press New York, NY, USA 2018 Chapter 11
  11. Huttunen S. Manninen K. Leskinen P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level J. Clean. Prod. 2014 80 5 16 10.1016/j.jclepro.2014.05.081
  12. Banja M. Jégard M. Motola V. Sikkema R. Support for biogas in the EU electricity sector—A comparative analysis Biomass Bioenergy 2019 128 105313 10.1016/j.biombioe.2019.105313
  13. Capodaglio A.G. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization Processes 2021 9 736 10.3390/pr9050736
  14. Del Río P. Mir-Artigues P. Combinations of support instruments for renewable electricity in Europe: A review Renew. Sustain. Energy Rev. 2014 40 287 295 10.1016/j.rser.2014.07.039
  15. EC Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources 2009 Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028 (accessed on 27 March 2024)
  16. Republic of Bulgaria—State Gazette, Ministry of Energy, Ministry of Environment and Water Integrated Plan in the Field of Energy and Climate of the Republic of Bulgaria 2021–2030 2020 Available online: https://faolex.fao.org/docs/pdf/bul212381.pdf (accessed on 27 March 2024)
  17. Das A. Das S. Das N. Pandey P. Ingti B. Panchenko V. Bolshev V. Kovalev A. Pandey P. Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials Agriculture 2023 13 1689 10.3390/agriculture13091689
  18. Liu H. Li X. Hu J. Zhao J. Xu G. Dong D. Jia Y. Shao T. Fermentation Quality and Aerobic Stability Evaluation of Rice Straw Silage with Different Ensiling Densities Fermentation 2024 10 20 10.3390/fermentation10010020
  19. Pandit S. Savla N. Sonawane J.M. Sani A.M. Gupta P.K. Mathuriya A.S. Rai A.K. Jadhav D.A. Jung S.P. Prasad R. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances Fermentation 2021 7 169 10.3390/fermentation7030169
  20. Ghosh P. Shah G. Sahota S. Singh L. Vijay V.K. Chapter 7—Biogas Production from Waste: Technical Overview, Progress, and Challenges Bioreactors Singh L. Yousuf A. Mahapatra D.M. Elsevier Amsterdam, The Netherlands 2020 89 104
  21. Lalak J. Kasprzycka A. Martyniak D. Tys J. Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion Bioresour. Technol. 2016 200 194 200 10.1016/j.biortech.2015.10.022
  22. Jarunglumlert T. Bampenrat A. Sukkathanyawat H. Prommuak C. Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process Fermentation 2021 7 265 10.3390/fermentation7040265
  23. Iliev I. Terziev A. Environmental impact and risk analysis of the implementation of cogeneration power plants through biomass processing Innovative Renewable Waste Conversion Technologies Springer Cham, Switzerland 2021 385 394 10.1007/978-3-030-81431-1_14 978-303081431-1
  24. Pérez I. Garfí M. Cadena E. Ferrer I. Technicai economic and environmental assessment of household biogas digesters for rural communities Renew. Energy 2014 62 313 318 10.1016/j.renene.2013.07.017
  25. Xu Q. Tian Y. Kim H. Ko J.H. Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes Waste Manag. 2016 56 190 195 10.1016/j.wasman.2016.07.005
  26. Ghosh P. Sengupta S. Singh L. Sahay A. Chapter 8—Life Cycle Assessment of Waste-to-Bioenergy Processes: A Review Bioreactors Singh L. Yousuf A. Mahapatra D.M. Elsevier Amsterdam, The Netherlands 2020 105 122
  27. Lauer M. Dotzauer M. Hennig C. Lehmann M. Nebel E. Postel J. Szarka N. Thrän D. Flexible power generation scenarios for biogas plants operated in Germany: Impacts on economic viability and GHG emissions Int. J. Energy Res. 2017 41 63 80 10.1002/er.3592
  28. Bolkesjø T.F. Eltvig P.T. Nygaard E. An econometric analysis of support scheme effects on renewable energy investments in Europe Energy Procedia 2014 58 2 8 10.1016/j.egypro.2014.10.401
  29. Wang H. Xu J. Sheng L. Liu X. Zong M. Yao D. Anaerobic Digestion Technology for Methane Production Using Deer Manure under Different Experimental Conditions Energies 2019 12 1819 10.3390/en12091819
  30. Brémond U. de Buyer R. Steyer J.-P. Bernet N. Carrere H. Biological pretreatments of biomass for improving biogas production: An overview from lab scale to full-scale Renew. Sustain. Energy Rev. 2018 90 583 604 10.1016/j.rser.2018.03.103
  31. Sen B. Aravind J. Kanmani P. Lay C.H. State of the art and future concept of food waste fermentation to bioenergy Renew. Sustain. Energy Rev. 2016 53 547 557 10.1016/j.rser.2015.08.065
  32. Ozcan M. Öztürk S. Oguz Y. Potential evaluation of biomass-based energy sources for Turkey Eng. Sci. Technol. Int. J. 2015 8 178 184 10.1016/j.jestch.2014.10.003
  33. Cheng S. Li Z. Mang H.-P. Huba E.-M. Gao R. Wang X. Development and application of prefabricated biogas digesters in developing countries Renew. Sustain. Energy Rev. 2014 34 387 400 10.1016/j.rser.2014.03.035
  34. Munir M.T. Mansouri S.S. Udugama I.A. Baroutian S. Gernaey K.V. Young B.R. Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges Renew. Sustain. Energy Rev. 2018 96 64 75 10.1016/j.rser.2018.07.039
  35. Jiang X. Sommer S.G. Christensen K.V. A review of the biogas industry in China Energy Policy 2011 39 6073 6081 10.1016/j.enpol.2011.07.007
  36. Gwavuya S.G. Abele S. Barfuss I. Zeller M. Müller J. Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy Renew Energy 2012 48 202 209 10.1016/j.renene.2012.04.042
  37. Rajendran K. Aslanzadeh S. Johansson F. Taherzadeh M.J. Experimental and economical evaluation of a novel biogas digester Energy Convers. Manag. 2013 74 183 191 10.1016/j.enconman.2013.05.020
  38. Mang H.P. Li Z. de Porres Lebofa M.M. Huba E.M. Schwarz D. Schnell R. Luong N.G. Kellner C. Selke J. Biogas Production developing country biogas production, Developing Countries biogas production developing countries Renewable Energy Systems Springer New York, NY, USA 2013 218 246 10.1007/978-1-4614-5820-3_250
  39. Zlateva P. Terziev A.K. Yordanov K. Study of regime parameters of the fermenter in the production of biogas from animal liquid waste materials E3S Web Conf. 2021 286 02010 10.1051/e3sconf/202128602010
  40. Rai A.K. Al Makishah N.H. Wen Z. Gupta G. Pandit S. Prasad R. Recent Developments in Lignocellulosic Biofuels, a Renewable Source of Bioenergy Fermentation 2022 8 161 10.3390/fermentation8040161
  41. Weiland P. Biogas production: Current state and perspectives Appl. Microbiol. Biotechnol. 2010 85 849 860 10.1007/s00253-009-2246-7
  42. Sawyerr N. Trois C. Workneh T. Okudoh V. An Overview of Biogas Production: Fundamentals, Applications and Future Research Int. J. Energy Econ. Policy 2019 9 105 116 10.32479/ijeep.7375
  43. Babatunde D.E. Babatunde O.M. Akinbulire T.O. Oluseyi P.O. Hybrid energy systems model with the inclusion of energy efficiency measures: A rural application perspective Int. J. Energy Econ. Policy 2018 8 310 323
  44. Kapoor R. Ghosh P. Kumar M. Vijay V.K. Evaluation of biogas upgrading technologies and future perspectives: A review Environ. Sci. Pollut. Res. 2019 26 11631 11661 10.1007/s11356-019-04767-1
  45. He H. Wang Z. Yan J. Wang W. Zhu J. Chen J. Liu D. Wang H. Cui Z. Yuan X. Enhanced biomethane generation from the anaerobic digestion of wilted corn straw via control in mesophilic and thermophilic temperature intervals Fuel 2023 349 128616 10.1016/j.fuel.2023.128616
  46. He H. Wang Z. Wang W. He H. Yan J. Wang H. Cui Z. Yuan X. Mitigating short-circuits through synergistic temperature and hydraulic retention time control for enhancing methane yield in continuous stirred-tank reactors Energy 2024 289 129914 10.1016/j.energy.2023.129914
  47. Hupfauf S. Plattner P. Wagner A.O. Kaufmann R. Insam H. Podmirseg S.M. Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 °C Bioresour. Technol. 2018 269 309 318 10.1016/j.biortech.2018.08.106
  48. Jain S. Jain S. Wolf I.T. Lee J. Tong Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste Renew. Sustain. Energy Rev. 2015 52 142 154 10.1016/j.rser.2015.07.091
  49. Ren H. Mei Z. Fan W. Wang Y. Liu F. Luo T. Li D. Li Z. Feng R. Effects of temperature on the performance of anaerobic co-digestion of vegetable waste and swine manure Int. J. Agric. Biol. Eng. 2018 11 218 225 10.25165/j.ijabe.20181101.3706

Issue

Fermentation, vol. 10, 2024, , https://doi.org/10.3390/fermentation10040187

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus и Web of Science