Autors: Angelova, R. A., Mijorski S., Stankov P., Sofronova, D. A., Velichkova, R. T., Simova, I. S., Markov, D. G.
Title: Numerical simulation of the air permeability of protective face masks
Keywords:

Abstract: The paper presents a procedure for numerical simulation of the air permeability in the transversal direction of protective face masks. Two types of three-layer face masks were considered, and their air-permeability was experimentally measured together with the masks' structural, geometric and mass characteristics. Two simulation approaches were tested with the actual thickness of the mask (Model 1-1) and a scaled model, corresponding to 4 times augmentation of the mask's thickness (Model 1-4). A total of 12 steady-state simulations were conducted with a complete comparative analysis between the two models and the two masks (porous medium). An adapted ENGYS® version of the computational code OpenFoam® was applied. The numerical results were verified with the experiments and showed a very good correlation.

References

  1. R. Tal-Singer and J. D. Crapo, Chronic Obstructive Pulmonary Diseases: J. of the COPD Foundation, 7 (2), pp. 73-75 (2020). 10.15326/jcopdf.7.2.2020.0149
  2. C. C. Chen and K. Willeke, American J of infection control, 20 (4), pp. 177-184 (1992). 10.1016/S0196-6553(05)80143-9
  3. E. E. Sickbert-Bennett, J. M. Samet, P. W. Clapp, H. Chen, J. Berntsen, K. L. Zeman,... and W. D. Bennett JAMA Internal Medicine, 180 (12), pp. 1607-1612 (2020). 10.1001/jamainternmed.2020.4221
  4. L. H. Kwong, R. Wilson, S. Kumar, Y. S. Crider, Y. Reyes Sanchez, D. Rempel, and A. Pillarisetti, ACS nano, 15 (4), pp. 5904-5924 (2021). 10.1021/acsnano.0c10146
  5. A. Sharma, H. Omidvarborna and P. Kumar, J. of hazardous materials, 422, 126783, pp. 1-18 (2022).
  6. B. R. Cormier, R. Qi, G. Yun, Y. Zhang, and M. S. Mannan, J of Loss Prevention in the Process Industries, 22 (3), pp. 332-352 (2009). 10.1016/j.jlp.2008.12.004
  7. A. K. Puszkarz and I. Krucinska, Int. J. for Multiscale Computational Engineering, 16 (6), pp. 509-526 (2018). 10.1615/IntJMultCompEng.2018022099
  8. T. Norton and D. W. Sun, Trends in Food Science & Technology, 17 (11), pp. 600-620 (2006). 10.1016/j.tifs.2006.05.004
  9. D. Sofronova, R. A. Angelova, Y. Sofronov and M. Ivanova, "Measuring the Parameters of the Microenvironment under Protective Face Masks," in XXXII International Scientific Symposium Metrology and Metrology Assurance (MMA) (pp. 1-6). IEEE, (2022).
  10. R. A. Angelova, D. Sofronova, R. Velichkova, D. Markov, P. Stankov and M. Dimova, "Determination of the Morphological Characteristics of Eight Types of Protective Face Masks and Respirators," in XXXII International Scientific Symposium Metrology and Metrology Assurance (MMA) (pp. 1-6). IEEE, (2022).
  11. E. A. Shashina, E. V. Belova, O. A. Gruzdeva, A. Y. Skopin, S. V. Andreev, Y. V. Zhernov,... and O. V. Mitrokhin, Health Risk Analysis (1), pp. 85-91 (2022).
  12. F. Menter F., Turbulence Modelling for Engineering Flows, ANSYS Inc. (2011).
  13. OpenFOAM® User Guide: 3.5 Standard solvers. http://cfd.direct/openfoam/user-guide/standard-solvers/ (2016).
  14. OpenFOAM® User Guide: 4.5 Solution and algorithm control. http://cfd.direct/openfoam/user-guide/fvSolution (2016).
  15. OpenFOAM® User Guide: 5.4 Mesh generation with snappyHexMesh. http://cfd.direct/openfoam/user-guide/snappyhexmesh/ (2016).

Issue

AIP Conference Proceedings, vol. 3034, pp. 1, 2024, , https://doi.org/10.1063/5.0194777

Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus