Autors: Karandjulov, L. I., Stoyanova, Y. P. Title: Boundary value problem for almost nonlinear singularly perturbed systems of ordinary differential equations Keywords: Boundary-value problems, singularly perturbed system, asymptAbstract: A boundary-value problems for almost nonlinear singularly
perturbed systems of ordinary differential equations are considered. An as-
ymptotic solution is constructed under some assumption and using boundary
functions and generalized inverse matrix and projectors. References - Boichuk, A. A. , Zhjuravliev, V. F., Samoilenko,A. M., 1995, Generalized inverse operators and Noether’s boundary problems, Kiev, IM NAN Ukraina
- Haber, S., Levinson, N., 1950, A boundary value problem for an singularly perturbed differential equation, Proc. Amer. Math. Soc., Volume 6, pp. 866–872
- Imanaliev, M., 1972, Asymptotic methods in the theory of singularly perturbed integro-differential systems, Frunze, ILIM
- Karandjulov, L.I., 1997, Asimptotic solution of definite class of singularly per- turbed linear boundary value problem for ODE, Annuaire Univ. Sofia Fac. Math. Inform., Volume 91 (1), pp. 79-95
- Karandjulov, L. I., Boichuk, A. A., Bozhko, V. A., 1994, Asymptotic ex- pansion of solution of singularly perturbed linear boundary problems, Dokl. Akad. Nauk Ukraina, Volume 1, pp. 7-10
- N. Levinson, 1958, A boundary value problem for a singularly perturbed differ- ential equation, Duke Math. J., Volume 2, pp. 331–342
- S. A. Lomov, 1981, Introduction in the general theory of singular perturbations, Moscow, Nauka
- M. Z. Nached, 1976, Generalize Inverse and Applications, New Jork, San Francisco, London, Acad. Press
- R. Penrose, 1956, On best approxmate solution on linear matrix equations, Proc. Cambrige Philos. Soc., Volume 52, pp. 17-19
- R. Penrose, 1950, A generalize inverse for matrices, Proc. Cambrige Philos. Soc., Volume 51, pp. 406-413
- A. N. Tikhonov, 1952, System of differential equations with small parameter of the drivatives, Mat. Sb., Volume 31(3), pp. 536-575
- A. B. Vasil’eva, 1952, On the differential equations with small parameters of the derivatives, Math. Sb., Volume 31(3), pp. 587-644
- A. B. Vasil’eva, 1963, Asymptotic behavior of solutions of certain problems for ordinary nonlinear differential equation with small parameters of the higher derivative, Uspekhi Mat. Nauk, Volume 18(3), pp. 15-86
- A. B. Vasil’eva and V. F. Butuzov, 1973, Asymptotic expansions of solution of singularly perturbed equations, Moscow, Nauka
- A. B. Vasil’eva and V. F. Butuzov, 1978, Singularly perturbed equations in the critical case, Moscow, Moscow State University
- W. Wasow, 1978, Asymptotic expansions for ordinary differential equation, Moscow, Mir
Issue
| Serdica Mathematical Journal, vol. 26, issue 4, pp. 309 – 330, 2000, Bulgaria, ISSN 1310-6600 |
Full text of the publication |