Autors: Tsonev, V. C.
Title: Investigation of the behavior of steel 1.4852M in the conditions of short-term creep at 900 °C
Keywords:

Abstract: In this study, creep curves of steel 1.4852M were obtained experimentally at a temperature of 900 °C and high values of the constant tensile strength. For each creep curve, the durations of the first and second stages of creep and the rate of creep through the first stage for different values of time were determined. The steps of developing a model to describe the obtained results are shown. This model can be used to predict the creep limit for periods exceeding many times the duration of the experiments performed.

References

  1. L. Lazov and I. Slavov, Strength of Materials (in Bulgarian), Tehnika Sofia, Bulgaria (1992).
  2. V. Tsonev, Determination of mechanical characteristics of a new alloy steel at high temperatures and static load, Proceedings of BulTrans-2010, Sozopol, Bulgaria, pp. 209-211 (2010).
  3. J. Betten, Creep mechanics, Springer Science & Business Media (2008).
  4. N. Kuzmanov, B. Borisov and I. Muhtarov, Tensile testing of Inconel 600 wire at high temperatures, IOP Conference Series: Materials Science and Engineering 878, 012057 (2020). 10.1088/1757-899X/878/1/012057
  5. L. Gardner, Y. Bu, P. Francis, N.R. Baddoo, K.A. Cashell and F. McCann, Elevated temperature material properties of stainless steel reinforcing bar, Construction and Building Materials 114, 977-997 (2016). 10.1016/j.conbuildmat.2016.04.009
  6. K. Kan, O. Muránsky, P.J. Bendeich, R.N. Wright, J.J. Kruzic, and W. Payten, Assessment of creep damage models in the prediction of high-temperature creep behaviour of Alloy 617, International Journal of Pressure Vessels and Piping 177, 103974 (2019). 10.1016/j.ijpvp.2019.103974
  7. W.G. Kim, J.Y. Park, I.M.W. Ekaputra, S.J. Kim, M.H. Kim, and Y.W. Kim, Creep deformation and rupture behavior of Alloy 617, Engineering Failure Analysis 58, 441-451 (2015). 10.1016/j.engfailanal.2015.07.041
  8. H. Jing, D. Su, L. Xu, L. Zhao, Y. Han and R. Sun, Finite element simulation of creep-fatigue crack growth behavior for P91 steel at 625 °C considering creep-fatigue interaction, International Journal of Fatigue 98, 41-52 (2017). 10.1016/j.ijfatigue.2017.01.004
  9. X. Wang, H. Li, K. Chandrashekhara, S.A. Rummel, S. Lekakh, D.C. Van Aken and R.J. O'Malley, Inverse finite element modeling of the barreling effect on experimental stress-strain curve for high temperature steel compression test, Journal of Materials Processing Technology 243, 465-473 (2017). 10.1016/j.jmatprotec.2017.01.012
  10. V. Tsonev, B. Dimova and N. Nikolov, Criteria for Assessing the Behavior of Materials Operating at High Temperatures and Alternating Stress, Proceedings of AMO '2010, Varna, Bulgaria, pp. 176-181 (2010).
  11. V. Tsonev, B. Borisov, I. Muhtarov and N. Kuzmanov, Testing machine for experimental investigation in high temperature conditions, Proceedings of BulTrans-2017, Sozopol, Bulgaria, pp. 64-68 (2017).
  12. N. Nikolov, V. Tsonev, L. Lazov and V. Georgiev, Design of a heating device for long material testing at high temperature, Proceedings of EMF' 2009, pp. 187-192 (2009).
  13. N. Nikolov, V. Tsonev and L. Lazov, Controlling of stand for materials testing at high temperatures, Proceedings of AMO '2010, Varna, Bulgaria, pp. 315-319 (2010).
  14. EN ISO 6892-2:2018 Metallic materials-Tensile testing-Part 2: Method of test at elevated temperature (2018).

Issue

AIP Conference Proceedings, vol. 3078, pp. 060003, 2024, , https://doi.org/10.1063/5.0208314

Вид: публикация в международен форум, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus