Autors: Dimitrov, S. I. Title: A quinary diophantine inequality by primes with one of the form p=x2+y2+1 Keywords: Bombieri – Vinogradov type result, Diophantine inequality, Exponential sum, PrimesAbstract: In this paper we show that, for any fixed 10, the diophantine inequality (Formula presented.) has a solution in prime numbers p1,p2,p3,p4,p5, such that p1=x2+y2+1.References - R. Baker Some diophantine equations and inequalities with primes Funct. Approx. Comment. Math. 2021 64 2 203 250 4278752 10.7169/facm/1912
- B. Baker A. Weingartner Some applications of the double large sieve Monatsh. Math. 2013 170 261 304 3055787 10.1007/s00605-012-0447-0
- S.I. Dimitrov Diophantine approximation with one prime of the form p=x2+y2+1 Lith. Math. J. 2021 61 4 445 459 4344100 10.1007/s10986-021-09538-5
- S.I. Dimitrov A ternary diophantine inequality by primes with one of the form p=x2+y2+1 Ramanujan J. 2022 59 2 571 607 4480301 10.1007/s11139-021-00545-1
- S.W. Graham G. Kolesnik Van der Corput’s Method of Exponential Sums 1991 New York Cambridge University Press 10.1017/CBO9780511661976
- D.R. Heath-Brown The Piatetski-Shapiro prime number theorem J. Number Theory 1983 16 242 266 698168 10.1016/0022-314X(83)90044-6
- C. Hooley Applications of sieve methods to the theory of numbers 1976 Press Cambridge Univ
- M.N. Huxley Exponential sums and the Riemann zeta function V Proc. Lond. Math. Soc. 2005 90 1 1 41 2107036 10.1112/S0024611504014959
- H. Iwaniec, E. Kowalski, Analytic number theory, Colloquium Publications, 53, Amer. Math. Soc., (2004).
- S. Li Y. Cai On a Diophantine inequality involving prime numbers Ramanujan J. 2020 52 163 174 4083222 10.1007/s11139-018-0132-6
- Ju. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR, Ser.Mat., 24, (1960), 629 – 706 (in Russian).
- I. Piatetski-Shapiro On a variant of the Waring-Goldbach problem Mat. Sb. 1952 30 105 120 51257 (in Russian)
- P. Sargos J. Wu Multiple exponential sums with monomials and their applications in number theory Acta Math. Hungar. 2000 87 333 354 1771211 10.1023/A:1006777803163
- B. I. Segal, On a theorem analogous to Waring’s theorem, Dokl. Akad. Nauk SSSR (N. S.), 2, (1933), 47 – 49, (in Russian).
- S. Shi L. Liu On a Diophantine inequality involving prime powers Monatsh. Math. 2013 169 423 440 3019293 10.1007/s00605-012-0420-y
- E. Titchmarsh, The Theory of the Riemann Zeta-function (revised by D. R. Heath-Brown), Clarendon Press, Oxford (1986).
- D. Tolev On a diophantine inequality involving prime numbers Acta Arith. 1992 61 289 306 1161480 10.4064/aa-61-3-289-306
- W. Zhai X. Cao On a diophantine inequality over primes Adv. Math. (China) 2003 32 1 63 73 1982314
- W. Zhai X. Cao On a diophantine inequality over primes (II) Monatsh. Math. 2007 150 173 179 2293635 10.1007/s00605-005-0390-4
- M. Zhang, J. Li, On a Diophantine inequality with five prime variables, arXiv:1810.09368v1 [math.NT] 22 Oct 2018.
Issue
| Indian Journal of Pure and Applied Mathematics, vol. 55, pp. 168-188, 2024, , https://doi.org/10.1007/s13226-022-00354-2 |
|