Autors: Dimitrov, S. I.
Title: A quinary diophantine inequality by primes with one of the form p=x2+y2+1
Keywords: Bombieri – Vinogradov type result, Diophantine inequality, Exponential sum, Primes

Abstract: In this paper we show that, for any fixed 10, the diophantine inequality (Formula presented.) has a solution in prime numbers p1,p2,p3,p4,p5, such that p1=x2+y2+1.

References

  1. R. Baker Some diophantine equations and inequalities with primes Funct. Approx. Comment. Math. 2021 64 2 203 250 4278752 10.7169/facm/1912
  2. B. Baker A. Weingartner Some applications of the double large sieve Monatsh. Math. 2013 170 261 304 3055787 10.1007/s00605-012-0447-0
  3. S.I. Dimitrov Diophantine approximation with one prime of the form p=x2+y2+1 Lith. Math. J. 2021 61 4 445 459 4344100 10.1007/s10986-021-09538-5
  4. S.I. Dimitrov A ternary diophantine inequality by primes with one of the form p=x2+y2+1 Ramanujan J. 2022 59 2 571 607 4480301 10.1007/s11139-021-00545-1
  5. S.W. Graham G. Kolesnik Van der Corput’s Method of Exponential Sums 1991 New York Cambridge University Press 10.1017/CBO9780511661976
  6. D.R. Heath-Brown The Piatetski-Shapiro prime number theorem J. Number Theory 1983 16 242 266 698168 10.1016/0022-314X(83)90044-6
  7. C. Hooley Applications of sieve methods to the theory of numbers 1976 Press Cambridge Univ
  8. M.N. Huxley Exponential sums and the Riemann zeta function V Proc. Lond. Math. Soc. 2005 90 1 1 41 2107036 10.1112/S0024611504014959
  9. H. Iwaniec, E. Kowalski, Analytic number theory, Colloquium Publications, 53, Amer. Math. Soc., (2004).
  10. S. Li Y. Cai On a Diophantine inequality involving prime numbers Ramanujan J. 2020 52 163 174 4083222 10.1007/s11139-018-0132-6
  11. Ju. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR, Ser.Mat., 24, (1960), 629 – 706 (in Russian).
  12. I. Piatetski-Shapiro On a variant of the Waring-Goldbach problem Mat. Sb. 1952 30 105 120 51257 (in Russian)
  13. P. Sargos J. Wu Multiple exponential sums with monomials and their applications in number theory Acta Math. Hungar. 2000 87 333 354 1771211 10.1023/A:1006777803163
  14. B. I. Segal, On a theorem analogous to Waring’s theorem, Dokl. Akad. Nauk SSSR (N. S.), 2, (1933), 47 – 49, (in Russian).
  15. S. Shi L. Liu On a Diophantine inequality involving prime powers Monatsh. Math. 2013 169 423 440 3019293 10.1007/s00605-012-0420-y
  16. E. Titchmarsh, The Theory of the Riemann Zeta-function (revised by D. R. Heath-Brown), Clarendon Press, Oxford (1986).
  17. D. Tolev On a diophantine inequality involving prime numbers Acta Arith. 1992 61 289 306 1161480 10.4064/aa-61-3-289-306
  18. W. Zhai X. Cao On a diophantine inequality over primes Adv. Math. (China) 2003 32 1 63 73 1982314
  19. W. Zhai X. Cao On a diophantine inequality over primes (II) Monatsh. Math. 2007 150 173 179 2293635 10.1007/s00605-005-0390-4
  20. M. Zhang, J. Li, On a Diophantine inequality with five prime variables, arXiv:1810.09368v1 [math.NT] 22 Oct 2018.

Issue

Indian Journal of Pure and Applied Mathematics, vol. 55, pp. 168-188, 2024, , https://doi.org/10.1007/s13226-022-00354-2

Вид: статия в списание, публикация в издание с импакт фактор, публикация в реферирано издание, индексирана в Scopus