Autors: Stamov, T. G. Title: Impulsive Control Discrete Fractional Neural Networks in Product Form Design: Practical Mittag-Leffler Stability Criteria Keywords: discrete fractional differences, impulsive control, neural networks, practical stability, product form designAbstract: The planning, regulation and effectiveness of the product design process depend on various characteristics. Recently, bio-inspired collective intelligence approaches have been applied in this process in order to create more appealing product forms and optimize the design process. In fact, the use of neural network models in product form design analysis is a complex process, in which the type of network has to be determined, as well as the structure of the network layers and the neurons in them; the connection coefficients, inputs and outputs have to be explored; and the data have to be collected. In this paper, an impulsive discrete fractional neural network modeling approach is introduced for product design analysis. The proposed model extends and complements several existing integer-order neural network models to the generalized impulsive discrete fractional-order setting, which is a more flexible mechanism to study product form design. Since control and stability methods are fundamental in the construction and practical significance of a neural network model, appropriate impulsive controllers are designed, and practical Mittag-Leffler stability criteria are proposed. The Lyapunov function strategy is applied in providing the stability criteria and their efficiency is demonstrated via examples and a discussion. The established examples also illustrate the role of impulsive controllers in stabilizing the behavior of the neuronal states. The proposed modeling approach and the stability results are applicable to numerous industrial design tasks in which multi-agent systems are implemented. References - Alanis A.Y. Arana-Daniel N. López-Franco C. Artificial Neural Networks for Engineering Applications 1st ed. Academic Press St. Louis, MO, USA 2019
- Armstrong H. Big Data, Big Design: Why Designers Should Care about Artificial Intelligence 1st ed. Princeton Architectural Press Princeton, NJ, USA 2021
- Rafiq M.Y. Bugmann G. Easterbrook D.J. Neural network design for engineering applications Comput. Struct. 2001 79 1541 1552 10.1016/S0045-7949(01)00039-6
- Shams M. Carpentieri B. Q-analogues of parallel numerical scheme based on neural networks and their engineering applications Appl. Sci. 2024 14 1540 10.3390/app14041540
- Hsiao S.W. Huang H.C. A neural network based approach for product form design Des. Stud. 2002 23 67 84 10.1016/S0142-694X(01)00015-1
- Hsiao S.W. Tsai H.C. Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design Int. J. Ind. Ergon. 2005 35 411 428 10.1016/j.ergon.2004.10.007
- Lai H.H. Lin Y.C. Yeh C.H. Form design of product image using grey relational analysis and neural network models Comput. Oper. Res. 2005 32 2689 2711 10.1016/j.cor.2004.03.021
- Tang C.Y. Fung K.Y. Lee E.W.M. Ho G.T.S. Siu K.W.M. Mou W.L. Product form design using customer perception evaluation by a combined superellipse fitting and ANN approach Adv. Eng. Inform. 2013 27 386 394 10.1016/j.aei.2013.03.006
- Wu Y. Product form evolutionary design system construction based on neural network model and multi-objective optimization J. Intell. Fuzzy Syst. 2020 39 7977 7991 10.3233/JIFS-201439
- Yeh C.H. Lin Y.C. Neural network models for transforming consumer perception into product form design Advances in Neural Networks Wang J. Yi Z. Zurada J.M. Lu B.L. Yin H. Springer Berlin/Heidelberg, Germany 2006 799 804
- Zheng H. Form finding and evaluating through machine learning: The prediction of personal design preference in polyhedral structures Architectural Intelligence Yuan P.F. Xie M. Leach N. Yao J. Wang X. Springer Singapore 2020 207 217
- Ulrich K. Eppinger S. Yang M.C. Product Design and Development 1st ed. McGraw-Hill Education New York, NY, USA 2020
- Gorman C. The Industrial Design Reader 1st ed. Allworth Press New York, NY, USA 2003
- Itten J. Design and Form. The Basic Course at the Bauhaus and Later 1st ed. Reinhold New York, NY, USA 1964
- Williams R. The Geometrical Foundation of Natural Structure: A Source Book of Design 1st ed. Dover Publications New York, NY, USA 1979
- Zitzmann L. Schulz B. Dokumente zur Visuellgestalterischen Grundlagenausbildung 1st ed. Giebichenstein Halle, Germany 1990
- Singh H. Srivastava H.M. Nieto J.J. Handbook of Fractional Calculus for Engineering and Science 1st ed. CRC Press Boca Raton, FL, USA 2022
- Sun H.G. Zhang Y. Baleanu D. Chen W. Chen Y.Q. A new collection of real world applications of fractional calculus in science and engineering Commun. Nonlinear Sci. Numer. Simul. 2018 64 213 231 10.1016/j.cnsns.2018.04.019
- Yang Y. Zhang H.H. Fractional Calculus with Its Applications in Engineering and Technology 1st ed. Springer Cham, Switzerland 2019
- Joshi M. Bhosale S. Vyawahare V.A. A survey of fractional calculus applications in artificial neural networks Artif. Intell. Rev. 2023 56 13897 13950 10.1007/s10462-023-10474-8
- Maiti M. Sunder M. Abishek R. Bingi K. Shaik N.B. Benjapolakul W. Recent advances and applications of fractional-order neural networks Eng. J. 2022 26 49 67 10.4186/ej.2022.26.7.49
- Viera-Martin E. Gómez-Aguilar J.F. Solís-Pérez J.E. Hernández-Pérez J.A. Escobar-Jiménez R.F. Artificial neural networks: A practical review of applications involving fractional calculus Eur. Phys. J. Spec. Top. 2022 231 2059 2095 10.1140/epjs/s11734-022-00455-3 35194484
- Heilat A.S. Karoun R.C. Al-Husban A. Abbes A. Al Horani M. Grassi G. Ouannas A. The new fractional discrete neural network model under electromagnetic radiation: Chaos, control and synchronization Alex. Eng. J. 2023 76 391 409 10.1016/j.aej.2023.06.017
- Hioual A. Ouannas A. Oussaeif T.E. Grassi G. Batiha I.M. Momani S. On variable-order fractional discrete neural networks: Solvability and stability Fractal Fract. 2022 6 119 10.3390/fractalfract6020119
- Li H.L. Cao J. Hu C. Jiang H. Alsaedi A. Synchronization analysis of nabla fractional-order fuzzy neural networks with time delays via nonlinear feedback control Fuzzy Sets Syst. 2024 475 108750 10.1016/j.fss.2023.108750
- Li H.L. Cao J. Hu C. Jiang H. Alsaadi F.E. Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks IEEE Trans. Neural Netw. Learn. Syst. 2023 1 12 10.1109/TNNLS.2023.3274959 37227907
- Pratap A. Raja R. Cao J. Huang C. Niezabitowski M. Bagdasar O. Stability of discrete-time fractional-order time-delayed neural networks in complex field Math. Methods Appl. Sci. 2021 44 419 440 10.1002/mma.6745
- You X. Song Q. Zhao Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay Neural Netw. 2020 122 382 394 10.1016/j.neunet.2019.11.004
- Zhang H. Chen X. Ye R. Stamova I. Cao J. Quasi-projective synchronization analysis of discrete-time FOCVNNs via delay-feedback control Chaos Solit. Fractals 2023 173 113629 10.1016/j.chaos.2023.113629
- Zhang X.L. Li H.L. Kao Y. Zhang L. Jiang H. Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays Appl. Math. Comput. 2022 433 127417 10.1016/j.amc.2022.127417
- Stamov T. Practical stability criteria for discrete fractional neural networks in product form design analysis Chaos Solit. Fractals 2024 179 114465 10.1016/j.chaos.2024.114465
- Lin X. Liu W. The application of fractal art in ceramic product design IOP Conf. Ser. 2019 573 012003 10.1088/1757-899X/573/1/012003
- Sala N. Complex and fractal components in industrial design Int. J. Des. Nat. 2017 1 161 173
- Torvik P.J. Bagley R.L. Appearance of the fractional derivative in the behavior of real materials J. Appl. Mech. 1984 51 294 298 10.1115/1.3167615
- Andersson P. On robust design in the conceptual design phase: A qualitative approach J. Eng. Des. 1997 8 75 89 10.1080/09544829708907953
- Niu X. Qin S. Zhang H. Wang M. Wong R. Exploring product design quality control and assurance under both traditional and crowdsourcing-based design environments Adv. Mech. Eng. 2018 10 1 23 10.1177/1687814018814395
- Zhang S.Y. Xu J.H. Gou H.W. Tan J. A research review on the key technologies of intelligent design for customized products Engineering 2017 3 631 640 10.1016/J.ENG.2017.04.005
- Liu X. Impulsive control and optimization Appl. Math. Comput. 1995 73 77 98 10.1016/0096-3003(94)00204-H
- Cai R.Y. Zhou H.C. Kou C.H. Kalman rank criterion for the controllability of fractional impulse controlled systems IET Control Theory Appl. 2020 14 1358 1364 10.1049/iet-cta.2019.0027
- Li X. Song S. Impulsive Systems with Delays: Stability and Control 1st ed. Science Press & Springer Singapore 2022
- Liu F. Yang Y. Chang Q. Synchronization of fractional-order delayed neural networks with reaction–diffusion terms: Distributed delayed impulsive control Commun. Nonlinear Sci. Numer. Simul. 2023 124 107303 10.1016/j.cnsns.2023.107303
- Stamova I.M. Stamov G.T. Applied Impulsive Mathematical Models 1st ed. Springer Cham, Switzerland 2016
- Stamova I.M. Stamov G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications 1st ed. CRC Press Boca Raton, FL, USA 2017
- Yang T. Impulsive Control Theory 1st ed. Springer Berlin/Heidelberg, Germany 2001
- Yang X. Peng D. Lv X. Li X. Recent progress in impulsive control systems Math. Comput. Simul. 2019 155 244 268 10.1016/j.matcom.2018.05.003
- Bohner M. Stamova I. An impulsive delay discrete stochastic neural network fractional-order model and applications in finance Filomat 2018 32 6339 6352 10.2298/FIL1818339B
- He D. Xu L. Global convergence analysis of impulsive fractional order difference systems Bull. Pol. Ac. 2018 66 599 604
- Colbrook M.J. Antun V. Hansen A.C. The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem Proc. natl. Acad. Sci. USA 2022 119 e2107151119 10.1073/pnas.2107151119 35294283
- Ge S.S. Hang C.C. Lee T.H. Zhang T. Stable Adaptive Neural Network Control 1st ed. Kluwer Boston, MA, USA 2001
- Korkobi T. Djemel M. Chtourou C. Stability analysis of neural networks-based system identification Model Simul. Eng. 2008 2008 343940 10.1155/2008/343940
- Stamov T. Stability analysis of neural network models in engineering design Int. J. Eng. Adv. Tech. 2020 9 1862 1866 10.35940/ijeat.C5562.029320
- Yang C. Liu H. Stable low-rank CP decomposition for compression of convolutional neural networks based on sensitivity Appl. Sci. 2024 14 1491 10.3390/app14041491
- Lakshmikantham V. Leela S. Martynyuk A.A. Practical Stability of Nonlinear Systems 1st ed. World Scientific Bergen, NJ, USA 1990
- Chen F.C. Chang C.H. Practical stability issues in CMAC neural network control systems IEEE Trans. Control Syst. Technol. 1996 4 86 91 10.1109/87.481771
- Jiao T. Zong G. Ahn C.K. Noise-to-state practical stability and stabilization of random neural networks Nonlinear Dyn. 2020 100 2469 2481 10.1007/s11071-020-05628-0
- Stamov T. Neural networks in engineering design: Robust practical stability analysis Cybern. Inf. Technol. 2021 21 3 14 10.2478/cait-2021-0039
- Stamov T. Discrete bidirectional associative memory neural networks of the Cohen–Grossberg type for engineering design symmetry related problems: Practical stability of sets analysis Symmetry 2022 14 216 10.3390/sym14020216
- Tian Y. Sun Y. Practical stability and stabilisation of switched delay systems with non-vanishing perturbations IET Control Theory Appl. 2019 13 1329 1335 10.1049/iet-cta.2018.5332
- Buslowicz M. Kaaczorek T. Simple conditions for practical stability of positive fractional discrete-time linear systems Int. J. Appl. Math. Comput. Sci. 2009 19 263 269 10.2478/v10006-009-0022-6
- Oprzedkiewicz K. Gawin W. The practical stability of the discrete, fractional order, state space model of the heat transfer process Arch. Control Sci. 2018 28 463 482 10.24425/acs.2018.124712
- Ruszewski A. Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model Arch. Control Sci. 2016 26 441 452 10.1515/acsc-2016-0024
- Goodrich C. Peterson A. Discrete Fractional Calculus 1st ed. Springer New York, NY, USA 2017
- Ostalczyk P. Discrete Fractional Calculus: Applications in Control and Image Processing 1st ed. World Scientific Singapore 2015
- Giesl P. Hafstein S. Review on computational methods for Lyapunov functions Discrete Continuous Dyn. Syst. Ser. B 2016 20 2291 2331
- Abdeljawad T. On delta and nabla Caputo fractional differences and dual identities Discrete Dyn. Nature Soc. 2013 2013 406910 10.1155/2013/406910
- Howard T.J. Culley S. Dekoninck E.A. Reuse of ideas and concepts for creative stimuli in engineering design J. Eng. Des. 2011 22 565 581 10.1080/09544821003598573
- Li Y. Wang J. Li X. Zhao W. Design creativity in product innovation Int J. Adv. Manuf. Technol. 2007 33 213 222 10.1007/s00170-006-0457-y
- Baldii S. Papachristodoulou A. Kosmatopoulos E.B. Adaptive pulse width modulation design for power converters based on affine switched systems Nonlinear Anal. Hybri. Syst. 2018 30 306 322 10.1016/j.nahs.2018.07.002
- Tan H. Wu J. Bao H. Event-triggered impulsive synchronization of fractional-order coupled neural networks Appl. Math. Comput. 2022 429 127244 10.1016/j.amc.2022.127244
- Wang F. Zheng Z.W. Yang Y.Q. Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control Chaos Solitons Fract. 2021 142 110465 10.1016/j.chaos.2020.110465
- Zhang X. He D. Adaptive impulsive synchronization for fractional-order quaternion-valued neural networks with different structures and unknown parameters J. Vib. Control 2023 10.1177/10775463231222055
Issue
| Applied Sciences (Switzerland), vol. 14, 2024, , https://doi.org/10.3390/app14093705 |
|